.. image:: https://raw.githubusercontent.com/kiudee/chess-tuning-tools/master/docs/_static/CTT-Plots.png
.. image:: https://raw.githubusercontent.com/kiudee/chess-tuning-tools/master/docs/_static/logo.png
.. image:: https://readthedocs.org/projects/chess-tuning-tools/badge/?version=latest&style=flat-square :target: https://chess-tuning-tools.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
.. image:: https://zenodo.org/badge/234719111.svg?style=flat-square :target: https://zenodo.org/badge/latestdoi/234719111
A collection of tools for local and distributed tuning of chess engines.
Bayesian optimization <https://github.com/kiudee/bayes-skopt>
_.In order to be able to start the tuning, first create a python environment (at least Python 3.7) and install chess-tuning-tools by typing::
pip install chess-tuning-tools
Furthermore, you need to have cutechess-cli <https://github.com/cutechess/cutechess>
_
in the path. The tuner will use it to run matches.
To execute the local tuner, simply run::
tune local -c tuning_config.json
Take a look at the usage instructions
and the example configurations
to
learn how to set up the tuning_config.json
file.
Installation on Windows ^^^^^^^^^^^^^^^^^^^^^^^
To get chess-tuning-tools to work on Windows, the easiest way is to install
the Miniconda <https://docs.conda.io/en/latest/miniconda.html>
_ distribution.
Then, create a new environment and install chess-tuning-tools::
conda create -n myenv python=3.9 scikit-learn=0.23 activate myenv pip install chess-tuning-tools
.. _example configurations: https://github.com/kiudee/chess-tuning-tools/tree/master/examples .. _usage instructions: https://chess-tuning-tools.readthedocs.io/en/latest/usage.html