some feature is not enabled by default and it also can be used by set the compile marco but may loss tiny performance, some featue is conflicted each other or difficlut to be merged into only one head file and so it's distributed in different hash table file. Not all feature can be open in only one file(one hash map).
third party bechmark from https://martin.ankerl.com/2022/08/27/hashmap-bench-01/ and https://jacksonallan.github.io/c_cpp_hash_tables_benchmark/
load factor can be set 0.999 by set marco EMHASH_HIGH_LOAD == somevalue (in hash_table[5-8].hpp)
head only support by c++11/14/17/20, interface is highly compatible with std::unordered_map, some new functions added for performance.
efficient than other's hash map if key&value is not aligned (sizeof(key) % 8 != sizeof(value) % 8), hash_map<uint64_t, uint32_t> can save 1/3 memoery than hash_map<uint64_t, uint64_t>.
lru marco EMHASH_LRU_SET set. some keys is "frequceny accessed", if keys are not in main bucket slot, it'll be swaped with main bucket, and will be probed once.
no tombstones. performance will not deteriorate even high frequceny of insertion & erasion.
4 different implementation, for example some case pay attention on finding hot, some focus on finding cold(miss), and others only care about insert or erase and so on.
find hit is fastest at present, fast inserting(reserve) and effficient erasion from 6 different benchmarks(4 of them in my bench dir) by my bench
fully tested on OS(Win, Linux, Mac) with compiler(msvs, clang, gcc) and cpu(AMD, Intel, ARM64).
many optimization on integer key.
one array&inline entries node/entry contains a struct(Key key, size_t bucket, Value value) without separate footprint
main bucket equal to key_hash(key) % size, can not be occupyed(like cockoo hash) and many opertions serarch from it
smart collision resolution, collision node is linked (bucket) like separate channing. it's not suffered heavily performance loss by primary and secondary clustering.
3-way combined probing used to seach empty slot.
a new linear probing is used (in hash_table5.hpp). normaly linear probing is inefficient with high load factor, it use a new 3-way linear probing strategy to search empty slot. from benchmark even the load factor > 0.9, it's more 2-3 timer fast than traditional seach strategy.
second/backup hashing function if the input hash is bad with a very high collision if the compile marco EMHASH_SAFE_HASH is set to defend hash attack(but 10% performance descrease)
dump hash collision statics to analyze cache performance, number of probes for look up of successful/unsuccessful can be showed from dump info.
finding 64 slots once using x86 instruction bit scanf(ctz).
choose different hash algorithm by set compile marco EMHASH_FIBONACCI_HASH or EMHASH_IDENTITY_HASH depend on use case.
A thirdy party string hash algorithm is used for string key wyhash, which is faster than std::hash implementation
// constructor
emhash5::HashMap<int, int> m1(4);
m1.reserve(100);
for (int i = 1; i < 100; i++)
m1.emplace_unique(i, i); //key must be unique, performance is better than emplace, operator[].
auto no_value = m1.at(0); //no_value = 0; no exception throw!!!. only return zero for integer value.
// list constructor
emhash5::HashMap<int, std::string> m2 = {
{1, "foo"},
{3, "bar"},
{2, "baz"},
};
auto* pvalue = m2.try_get(1); //return nullptr if key is not exist
if (m2.try_set(4, "for")) printf("set success");
if (!m2.try_set(1, "new")) printf("set failed");
string ovalue = m2.set_get("1", "new"); //ovalue = "foo" and m2[1] == "new"
for(auto& p: m2)
std::cout << " " << p.first << " => " << p.second << '\n';
// copy constructor
emhash5::HashMap<int, std::string> m3 = m2;
// move constructor
emhash5::HashMap<int, std::string> m4 = std::move(m2);
//insert. insert_unique. emplace
m2.insert_unique(4, "four");
m2[4] = "four_again";
m2.emplace(std::make_pair(4, "four"));
m2.insert({{6, "six"}, {5, "five"}});
// range constructor
std::vector<std::pair<std::bitset<8>, int>> v = { {0x12, 1}, {0x01,-1} };
emhash5::HashMap<std::bitset<8>, double> m5(v.begin(), v.end());
//Option 1 for a constructor with a custom Key type
//Define the KeyHash and KeyEqual structs and use them in the template
emhash8::HashMap<Key, std::string, YourKeyHash, YourKeyEqual> m6 = {
{ {"John", "Doe"}, "example"},
{ {"Mary", "Sue"}, "another"}
};
//Option 2 for a constructor with a custom Key type
// Define a const == operator for the class/struct and specialize std::hash
// structure in the std namespace
emhash7::HashMap<Foo, std::string> m7 = {
{ Foo(1), "One"}, { 2, "Two"}, { 3, "Three"}
};
#if CXX20
struct Goo {int val; };
auto hash = [](const Goo &g){ return std::hash<int>{}(g.val); };
auto comp = [](const Goo &l, const Goo &r){ return l.val == r.val; };
emhash5::HashMap<Goo, double, decltype(hash), decltype(comp)> m8;
#endif
emhash8::HashMap<int,char> m8 = {{1,'a'},{2,'b'}};
for(const auto [k, v] : m8})
printf("%d %c\n", k, v);
const auto* data = m8.values();//order by insert
for (int i = 0; i < m8.size(); i++)
printf("%d %c\n", data[i].first, data[i].second);
The following benchmark shows that emhash has amazing performance even insert & erase with a high load factor 0.999.
static void RunHighLoadFactor()
{
std::random_device rd;
const auto rand_key = rd();
#if 1
WyRand srngi(rand_key), srnge(rand_key);
#else
std::mt19937_64 srngi(rand_key), srnge(rand_key);
#endif
const auto max_lf = 0.999f; //<= 0.9999f
const auto vsize = 1u << (20 + rand_key % 6);//must be power of 2
emhash7::HashMap<int64_t, int> myhash(vsize, max_lf);
auto nowus = getus();
for (size_t i = 0; i < size_t(vsize * max_lf); i++)
myhash.emplace(srngi(), i);
assert(myhash.bucket_count() == vsize); //no rehash
const auto insert_time = getus() - nowus; nowus = getus();
//erase & insert at a fixed load factor
for (size_t i = 0; i < vsize; i++) {
myhash.erase(srnge()); //erase an old key
myhash[srngi()] = 1; //insert a new key
}
const auto erase_time = getus() - nowus;
printf("vsize = %d, load factor = %.4f, insert/erase = %ld/%ld ms\n",
vsize, myhash.load_factor(), insert_time / 1000, erase_time / 1000);
assert(myhash.load_factor() >= max_lf - 0.001);
}
vsize = 1048576, load factor = 0.9990, insert/erase = 25/76 ms
vsize = 2097152, load factor = 0.9990, insert/erase = 52/222 ms
vsize = 4194304, load factor = 0.9990, insert/erase = 117/450 ms
vsize = 8388608, load factor = 0.9990, insert/erase = 251/1009 ms
some of benchmark result is uploaded, I use other hash map (martinus, ska, phmap, dense_hash_map ...) source to compile and benchmark. [] and []
another html result with impressive curve chartsAll.html (download all js file in tls_bench dir) generated by Tessil benchmark code
txt file result martin_bench.txt generated by code from martin
the benchmark code is some tiny changed for injecting new hash map, the result is not final beacuse it depends on os, cpu, compiler and dataset input.
my result is benched on 3 linux server(amd, intel, arm64), win10 pc/Laptop and apple m1): low is best
it's not a node-based hash map and can't keep the reference stable if insert/erase/rehash happens, use value pointer or choose the other node base hash map.
emhash7:HashMap<int,int> myhash(10);
myhash[1] = 1;
auto& myref = myhash[1];//**wrong used here**, can not keep reference stable
....
auto old = myref ; // myref maybe be changed and not invalid.
emhash7:HashMap<int,int> myhash2;
for (int i = 0; i < 10000; i ++)
myhash2[rand()] = myhash2[rand()]; // it will be crashed because of rehash, call reserve before or use insert.
for very large key-value, use pointer instead of value if you care about memory usage with high frequency of insertion or erasion
emhash7:HashMap<keyT,valueT> myhash; //value is very big, ex sizeof(value) 100 byte
emhash7:HashMap<keyT,*valueT> myhash2; //new valueT, or use std::shared_ptr<valueT>.
- the only known bug as follow example, if erase key/iterator during iteration. one key will be iteraored twice or missed. and fix it can desearse performance 20% or even much more and no good way to fix.
emhash7:HashMap<int,int> myhash;
//dome some init ...
for (const auto& it : myhash)
{
if (some_key == it.first) {
myhash.erase(key); //no any break
}
...
do_some_more();
}
//change upper code as follow
for (auto it = myhash.begin(); it != myhash.end(); it++)
{
if (some_key == it.first) {
it = myhash.erase(it);
}
...
do_some_more();
}
emhash7:HashMap<int,int> myhash = {{1,2},{5,2},};
auto it = myhash.find(1);
it = map.erase( it );
map.erase( it++ );// it's error code. use upper line
# Which one?
So what’s actually the best map to choose? it depends. Here are some basic suggestion you can follow:
1. if key/value is complex/big(ex std::string or user defined struct), try to use emhash8
because node's momory is continuous like std::vector, very fast iteration speed, search & insert is very fast and low memory usage,but it's some slow with deletion compared with emhash5-7.
2. as for insertion performance emhash7 is a good choice, it can set a extreme high load factor(>0.90, 0.99 is also ok) for memory usage.
3. emhash5/6 is optimized for find hit/erasion with integer keys, it also can be used as a small stack hashmap if set marco EMH_SMALL_SIZE.
The follow result is benchmarked on AMD 5800h cpu on windows 10/gcc 11.3(
code https://github.com/ktprime/emhash/blob/master/bench/qbench.cpp)
|10 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 32.6| 26.0| 27.7| 35.6| 23.8| 62.5 |
|emhash8::HashMap| 46.5| 27.5| 29.5| 29.2| 23.2| 62.5 |
|emhash7::HashMap| 38.0| 27.6| 29.1| 27.9| 23.9| 62.5 |
|emhash6::HashMap| 38.9| 27.2| 28.8| 28.1| 23.9| 62.5 |
|emhash5::HashMap| 41.3| 27.2| 28.2| 27.8| 28.7| 62.5 |
|200 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 12.4| 3.19| 7.64| 9.56| 2.39| 78.1 |
|emhash8::HashMap| 15.0| 5.14| 6.40| 7.22| 1.17| 78.1 |
|emhash7::HashMap| 12.4| 5.09| 5.92| 4.95| 1.88| 78.1 |
|emhash6::HashMap| 12.8| 4.96| 6.77| 5.67| 1.89| 78.1 |
|emhash5::HashMap| 15.8| 4.88| 5.79| 5.43| 3.54| 78.1 |
|3000 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 9.67| 1.90| 4.98| 7.16| 1.33| 73.2 |
|emhash8::HashMap| 13.5| 4.00| 5.38| 6.21| 0.08| 73.2 |
|emhash7::HashMap| 10.6| 3.98| 4.88| 3.93| 0.76| 73.2 |
|emhash6::HashMap| 11.4| 3.81| 5.70| 4.78| 0.76| 73.2 |
|emhash5::HashMap| 14.3| 3.82| 4.80| 4.50| 2.94| 73.2 |
|40000 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 10.7| 2.82| 2.85| 8.47| 1.43| 61.0 |
|emhash8::HashMap| 16.0| 4.22| 6.01| 7.14| 0.00| 61.0 |
|emhash7::HashMap| 11.7| 4.19| 5.47| 4.44| 0.73| 61.0 |
|emhash6::HashMap| 13.0| 3.89| 5.86| 5.24| 0.73| 61.0 |
|emhash5::HashMap| 15.7| 3.93| 5.30| 5.01| 4.40| 61.0 |
|500000 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 20.0| 13.3| 3.99| 17.9| 1.58| 47.7 |
|emhash8::HashMap| 26.2| 6.39| 7.62| 9.17| 0.00| 47.7 |
|emhash7::HashMap| 18.3| 10.6| 7.79| 9.82| 0.78| 47.7 |
|emhash6::HashMap| 21.6| 8.74| 8.39| 9.82| 0.79| 47.7 |
|emhash5::HashMap| 24.5| 8.19| 9.93| 8.93| 6.16| 47.7 |
|7200000 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 50.3| 21.3| 24.8| 29.6| 0.97| 85.8 |
|emhash8::HashMap| 82.4| 18.5| 18.7| 39.2| 0.00| 85.8 |
|emhash7::HashMap| 51.2| 18.4| 21.1| 20.2| 0.63| 85.8 |
|emhash6::HashMap| 53.5| 16.7| 19.2| 26.0| 0.63| 85.8 |
|emhash5::HashMap| 62.6| 16.0| 19.7| 22.6| 1.60| 85.8 |
|10000000 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 79.4| 32.3| 17.7| 48.0| 1.45| 59.6 |
|emhash8::HashMap| 95.6| 18.3| 18.1| 46.3| 0.00| 59.6 |
|emhash7::HashMap| 66.0| 16.9| 18.1| 20.4| 0.74| 59.6 |
|emhash6::HashMap| 63.6| 15.1| 17.0| 24.0| 0.75| 59.6 |
|emhash5::HashMap| 64.7| 16.6| 18.8| 22.3| 4.75| 59.6 |
|50000000 hashmap|Insert|Fhit |Fmiss|Erase|Iter |LoadFactor|
|----------------|------|-----|-----|-----|-----|----------|
|emilib2::HashMap| 79.4| 31.2| 27.7| 55.1| 1.22| 74.5 |
|emhash8::HashMap| 93.1| 19.4| 20.1| 41.7| 0.00| 74.5 |
|emhash7::HashMap| 62.7| 20.3| 22.4| 25.2| 0.68| 74.5 |
|emhash6::HashMap| 61.5| 16.1| 18.0| 28.0| 0.67| 74.5 |
|emhash5::HashMap| 65.1| 16.1| 18.8| 24.3| 2.72| 74.5 |