kwwcv / SSMP

(AAAI 2024) Paper: Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label Regeneration and BEVMix
Other
11 stars 0 forks source link
aaai2024

Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label Regeneration and BEVMix

Official implementation for our AAAI2024 paper: "Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label Regeneration and BEVMix" [Arxiv]

🔨 Dependencies and Installation

stage two: train model with both labeled and unlabeled data

python train_stage2.py --data [bev training folder] --GSdata_root [ground removal bev training folder] \ --resume [stage 1 trained model] --seed [random seed] --if_lf --if_bevmix --log

Keep the same [random seed] to make sure stage 1 and stage 2 are using the same labeled data set

when using [random seed] to randomly divide unlabeled and labeled data.


One can also use the same divided labeled and unlabeled data sets as used in the paper to train the model.

stage 1

python train_stage1.py --data [bev training folder] --preset_semi [split file] --log

stage 2

python train_stage2.py --data [bev training folder] --GSdata_root [ground removal bev training folder] \ --resume [stage 1 trained model] --preset_semi [split file] --if_lf --if_bevmix --log


## 🎯 Evaluation
### Trained model
|Ratio|Path|
|---|---|
|1% (semi)|[SSMP1%](https://drive.google.com/file/d/1l7NC4uLapSMGbWeQtk5808gX0jdB4IjG/view?usp=sharing)|
|5% (semi)|[SSMP5%](https://drive.google.com/file/d/1sPdObVITSxPssICARqJLrFsCUV8FLwgd/view?usp=sharing)|
|10% (semi)|[SSMP10%](https://drive.google.com/file/d/127u-LxePHyE8wyAbyrR9stLAN-vxOiQ6/view?usp=sharing)|
### Testing

python test.py --data [bev testing folder] --model [model path] \ --log_path [path to save results] --jitter

## Citation

@inproceedings{wang2024semi, title={Semi-supervised Class-Agnostic Motion Prediction with Pseudo Label Regeneration and BEVMix}, author={Wang, Kewei and Wu, Yizheng and Pan, Zhiyu and Li, Xingyi and Xian, Ke and Wang, Zhe and Cao, Zhiguo and Lin, Guosheng}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={38}, number={6}, pages={5490--5498}, year={2024} }



## 🍭 Acknowledgement
Our project is based on
[MotionNet](https://github.com/pxiangwu/MotionNet)

The optimal transport solver is adopted from
[Self-Point-Flow](https://github.com/L1bra1/Self-Point-Flow)

### License
This project is licensed under [NTU S-Lab License 1.0](LICENSE)