This procedure aims to fit sparse linear models using a binary matrix (n_samples x n_SNV) as features matrix and a gene expression matrix (n_genes x n_samples) as response. The procedure infers a sparse linear model (LASSO by default) for each gene (raw in the second matrix) and keeps the non-null inferred coefs.
This procedure can be used as a dimension reduction/feature selection procedure or as a feature ranking. It is based on the Scikit-Learn library and is easy to re-implement. However, the package allows to parallelize the fitting procedures, implements a cross-validation procedure and performs eeSNVs and gene rankings.
SSrGE can be used as a stand-alone procedure to reduce any SNV matrix (raw:single-cell, col: SNV (binary)), using a gene expression matrix (raw: gene-expression (float), col:single-cell). However, we have developped two additional modules, included in this package, that can be used to download and process RNA-seq data:
Alternatively, we compiled the download, alignment, and SNV calling pipelines into a docker container: opoirion/ssrge (see bellow).
git clone https://github.com/lanagarmire/SSrGE.git
cd SSrGE
pip2 install -r requirements.txt --user # python 2.7.X must be used
test SSrGE is functional:
python2 test/test_ssrge.py -v
Instantiate and fit SSrGE:
SSrGE should be used as a python package, below are usage example. SSrGE takes as input two matrices (A SNV matrix (n_cells x n_SNVs) and a Gene matrix (n_cells x n_Genes) In the original study, we encoded X with the following procedure: if a given snv (s) is present into a given cell (c), then X_c,n = 1 However, any type of encoding or continuous values can be used (For example, one can use X_c,n = 1 for a 1/1 genotype and 0.5 for a 0/1 genotype)
from garmire_SSrGE.ssrge import SSrGE
from garmire_SSrGE.examples import create_example_matrix_v1 # create examples matrices
help(SSrGE) # See the different functions and specific variables
help(create_example_matrix_v1)
X, Y, W = create_example_matrix_v1()
ssrge = SSrGE()
ssrge.fit(X, Y)
score_models, score_null_models = ssrge.score(X, Y)
X_r = ssrge.transform(X)
print X_r.shape, X.shape
ranked_feature = ssrge.rank_eeSNVs()
ssrge_ES = SSrGE(model='ElasticNet', alpha=01, l1_ratio=0.5) # Fitting using sklearn ElasticNet instead
ssrge_ES.fit(X, Y)
The fit method can take an additional CNV matrix of shape (n_cells x n_genes), and describing the CNV level for each gene.
from garmire_SSrGE.examples import create_example_matrix_v3
X, Y, C, W = create_example_matrix_v3()
help(ssrge.fit) # see the specific documentation of the fit method
ssrge.fit(X, Y, C)
ranked_feature = ssrge.rank_eeSNVs()
from garmire_SSrGE.linear_cross_validation import LinearCrossVal
help(LinearCrossVal)
X, Y, W = create_example_matrix_v1()
cross_val = LinearCrossVal(
model='LASSO',
SNV_mat=X,
GE_mat=Y
)
path = cross_val.regularization_path('alpha', [0.01, 0.1, 0.2])
Instead of relying on the regularization parameter (alpha), to select the number of eeSNVs, the nb_ranked_features
argument can be specified to abotained a fixed number of eeSNVs (assuming that nb_ranked_features is lower than the number of eeSNVs obtained with the specified alpha).
ssrge_topk = SSrGE(nb_ranked_features=2)
X_r_2 = ssrge_topk.fit_transform(X, Y)
print X_r_2.shape # (100, 2)
In order to rank genes with eeSNVs, the SSrGE instance must be instantiated with SNV ids and gene ids list.
gene_id_list_example = ['KRAS', 'HLA-A', 'SPARC']
snv_id_list_example = [('KRAS', 10220), ('KRAS', 10520), ('SPARC', 0220)]
## real example
from garmire_SSrGE.examples import create_example_matrix_v2
X, Y, gene_id_list, snv_id_list = create_example_matrix_v2()
ssrge = SSrGE(
snv_id_list=snv_id_list,
gene_id_list=gene_id_list,
nb_ranked_features=2,
alpha=0.01)
ssrge.fit(X, Y)
print ssrge.rank_genes()
Extract specific eeSNVs and impacted genes of a given subgroup. a given eeSNV is specific to a subgroup if it is signficantly more present amongst the cells from the given subgroup:
# Defining as a subgroup the first 6 elements from X
subgroup = ssrge.rank_features_for_a_subgroup([0, 1, 2, 3, 4, 5])
print subgroup.ranked_genes
print subgroup.ranked_eeSNVs
print subgroup.significant_genes
print subgroup.significant_eeSNVs
It is possible to create an SNV matrix using preexisting .vcf files and also a Gene expression matrix using expression files.
Each cell must have a distinct .vcf file with a unique name (e.g. snv_filtered.vcf) inside a unique folder, specific of the cell, with the name of the cells:
data
|-- GSM2259781__SRX1999927__SRR3999457
| |-- snv_filtered.vcf
| `-- stdout.log
`-- GSM2259782__SRX1999928__SRR3999458
|-- snv_filtered.vcf
`-- stdout.log
(stdout.log is not used and were created by the previous analysis)
and similarly for the gene expression files (matrix_counts.txt):
STAR
|-- GSM2259781__SRX1999927__SRR3999457
| |-- matrix_counts.txt
| `-- matrix_counts.txt.summary
`-- GSM2259782__SRX1999928__SRR3999458
|-- matrix_counts.txt
`-- matrix_counts.txt.summary
(matrix_counts.txt.summary is not used and were created by the previous analysis)
#gene_name chromsomes starting position ending position additionnal columns gene expression
MIR6859-3 chr1;chr15;chr16 17369;102513727;67052 17436;102513794;67119 ... 200
python2 ./garmire_SSrGE/generate_refgenome_index.py
docker pull opoirion/ssrge
mkdir /<Results data folder>/
cd /<Results data folder>/
PATHDATA=`pwd`
The pipeline consists of 3 steps (for downloading the data) and 4 steps for aligning and calling SNVs:
# Download
docker run --rm opoirion/ssrge download_soft_file -h
docker run --rm opoirion/ssrge download_sra -h
docker run --rm opoirion/ssrge extract_sra -h
# align and SNV calling
docker run --rm opoirion/ssrge star_index -h
docker run --rm opoirion/ssrge process_star -h
docker run --rm opoirion/ssrge feature_counts -h
docker run --rm opoirion/ssrge process_snv -h
Let's download and process 2 samples from GSE79457 in a project name test_n2
# download of the soft file containing the metadata for GSE79457
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge download_soft_file -project_name test_n2 -soft_id GSE79457
# download sra files
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge download_sra -project_name test_n2 -max_nb_samples 2
# exctract sra files
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge extract_sra -project_name test_n2
# rm sra files (optionnal)
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge rm_sra -project_name test_n2
## all these data can also be obtained using other alternative workflows
# here you need to precise which read length to use for creating a STAR index and which ref organism (MOUSE/HUMAN)
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge star_index -project_name test_n2 -read_length 100 -cell_type HUMAN
# STAR alignment
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge process_star -project_name test_n2 -read_length 100 -cell_type HUMAN
# sample-> gene count matrix
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge feature_counts -project_name test_n2
#SNV inference
docker run --rm -v $PATHDATA:/data/results/:Z opoirion/ssrge process_snv -project_name test_n2 -cell_type HUMAN