This repository contains the official implementation of our CVPR 2022 paper. It includes both training and evaluation code.
Our model was developed and evaluated using the following package dependencies:
We trained models on the MSR-VTT, MSVD and LSMDC datasets. To download the datasets, refer to this repository.
For LSMDC, you must obtain permission from MPII to download and use the data, so we do not provide the split and caption files in the data/
directory.
The following commands can be used to reproduce the main results of our paper using the supplied checkpoint files for each dataset. The commands will by default generate results for text-to-video retrieval (t2v). For video-to-text retrieval (v2t) results, add the argument --metric=v2t
to the command.
If the outputs/
folder does not exist, first run mkdir outputs
to create the directory. For each dataset, create a directory in outputs/
and store the corresponding checkpoint file. For each command below, replace {exp_name}
with the name of that directory.
Also, replace {videos_dir}
with the path to the dataset's videos.
For evaluation, you can change the batch_size
without affecting results.
Dataset | Command | Checkpoint File | t2v R@1 Result | |
---|---|---|---|---|
MSR-VTT-9k | python test.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --huggingface --load_epoch=-1 --dataset_name=MSRVTT --msrvtt_train_file=9k |
Link | 46.9 | |
MSR-VTT-7k | python test.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --huggingface --load_epoch=-1 --dataset_name=MSRVTT --msrvtt_train_file=7k |
Link | 43.9 | |
MSVD | python test.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --huggingface --load_epoch=-1 --dataset_name=MSVD |
Link | 47.2 | |
LSMDC | python test.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --huggingface --load_epoch=-1 --dataset_name=LSMDC |
Link | 25.2 |
The following commands can be used to train our X-Pool model for each dataset. Again, the evaluation is by default set to generate results for text-to-video retrieval (t2v). For video-to-text retrieval (v2t) results, add the argument --metric=v2t
to the command.
For each command below, replace {exp_name}
with your choice name of experiment. Also, replace {videos_dir}
with the path to the dataset's videos.
Dataset | Command |
---|---|
MSR-VTT-9k | python train.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --noclip_lr=3e-5 --transformer_dropout=0.3 --huggingface --dataset_name=MSRVTT --msrvtt_train_file=9k |
MSR-VTT-7k | python train.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --noclip_lr=1e-5 --transformer_dropout=0.4 --huggingface --dataset_name=MSRVTT --msrvtt_train_file=7k |
MSVD | python train.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --noclip_lr=1e-5 --transformer_dropout=0.4 --huggingface --dataset_name=MSVD |
LSMDC | python train.py --exp_name={exp_name} --videos_dir={videos_dir} --batch_size=32 --noclip_lr=1e-5 --transformer_dropout=0.3 --huggingface --dataset_name=LSMDC |
If you find this work useful in your research, please cite the following paper:
@inproceedings{gorti2022xpool,
title={X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval},
author={Gorti, Satya Krishna and Vouitsis, No{\"e}l and Ma, Junwei and Golestan, Keyvan and Volkovs, Maksims and Garg, Animesh and Yu, Guangwei},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2022}
}