Closed brando90 closed 2 years ago
btw, definitively don't want this:
learn2learn: Maybe try with allow_nograd=True and/or allow_unused=True ?
its just a 5cnn on mini-imagenet/cifarfs. There are no unused params...
Could you share a small example on colab? It's hard to help without knowing what you're doing.
@seba-1511 how do I set learn2learn: Maybe try with allow_nograd=True and/or allow_unused=True ?
?
for learn to learn this solved my issue:
Solution:
current solution for me is to:
allow_unused=True
allow_unused=True
code:
#!/usr/bin/env python3
"""
Demonstrates how to:
* use the MAML wrapper for fast-adaptation,
* use the benchmark interface to load mini-ImageNet, and
* sample tasks and split them in adaptation and evaluation sets.
To contrast the use of the benchmark interface with directly instantiating mini-ImageNet datasets and tasks, compare with `protonet_miniimagenet.py`.
"""
import random
import numpy as np
import torch
from torch import nn, optim
import learn2learn as l2l
from learn2learn.data.transforms import (NWays,
KShots,
LoadData,
RemapLabels,
ConsecutiveLabels)
def accuracy(predictions, targets):
predictions = predictions.argmax(dim=1).view(targets.shape)
return (predictions == targets).sum().float() / targets.size(0)
def fast_adapt(batch, learner, loss, adaptation_steps, shots, ways, device):
data, labels = batch
data, labels = data.to(device), labels.to(device)
# Separate data into adaptation/evalutation sets
adaptation_indices = np.zeros(data.size(0), dtype=bool)
adaptation_indices[np.arange(shots * ways) * 2] = True
evaluation_indices = torch.from_numpy(~adaptation_indices)
adaptation_indices = torch.from_numpy(adaptation_indices)
adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices]
evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices]
# Adapt the model
for step in range(adaptation_steps):
adaptation_error = loss(learner(adaptation_data), adaptation_labels)
learner.adapt(adaptation_error)
# Evaluate the adapted model
predictions = learner(evaluation_data)
evaluation_error = loss(predictions, evaluation_labels)
evaluation_accuracy = accuracy(predictions, evaluation_labels)
return evaluation_error, evaluation_accuracy
def main(
ways=5,
shots=5,
meta_lr=0.003,
fast_lr=0.5,
meta_batch_size=32,
adaptation_steps=1,
num_iterations=60000,
cuda=True,
seed=42,
):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
device = torch.device('cpu')
if cuda and torch.cuda.device_count():
torch.cuda.manual_seed(seed)
device = torch.device('cuda')
# Create Tasksets using the benchmark interface
tasksets = l2l.vision.benchmarks.get_tasksets('mini-imagenet',
train_samples=2 * shots,
train_ways=ways,
test_samples=2 * shots,
test_ways=ways,
root='~/data/l2l_data/',
)
# Create model
# model = l2l.vision.models.MiniImagenetCNN(ways)
from uutils.torch_uu.models.hf_uu.vit_uu import get_vit_get_vit_model_and_model_hps_mi
model, _ = get_vit_get_vit_model_and_model_hps_mi()
model.to(device)
maml = l2l.algorithms.MAML(model, lr=fast_lr, first_order=False, allow_unused=True)
opt = optim.Adam(maml.parameters(), meta_lr)
loss = nn.CrossEntropyLoss(reduction='mean')
for iteration in range(num_iterations):
opt.zero_grad()
meta_train_error = 0.0
meta_train_accuracy = 0.0
meta_valid_error = 0.0
meta_valid_accuracy = 0.0
for task in range(meta_batch_size):
# Compute meta-training loss
learner = maml.clone()
batch = tasksets.train.sample()
evaluation_error, evaluation_accuracy = fast_adapt(batch,
learner,
loss,
adaptation_steps,
shots,
ways,
device)
evaluation_error.backward()
meta_train_error += evaluation_error.item()
meta_train_accuracy += evaluation_accuracy.item()
# Compute meta-validation loss
learner = maml.clone()
batch = tasksets.validation.sample()
evaluation_error, evaluation_accuracy = fast_adapt(batch,
learner,
loss,
adaptation_steps,
shots,
ways,
device)
meta_valid_error += evaluation_error.item()
meta_valid_accuracy += evaluation_accuracy.item()
# Print some metrics
print('\n')
print('Iteration', iteration)
print('Meta Train Error', meta_train_error / meta_batch_size)
print('Meta Train Accuracy', meta_train_accuracy / meta_batch_size)
print('Meta Valid Error', meta_valid_error / meta_batch_size)
print('Meta Valid Accuracy', meta_valid_accuracy / meta_batch_size)
# Average the accumulated gradients and optimize
for p in maml.parameters():
if p.grad is not None:
p.grad.data.mul_(1.0 / meta_batch_size)
opt.step()
meta_test_error = 0.0
meta_test_accuracy = 0.0
for task in range(meta_batch_size):
# Compute meta-testing loss
learner = maml.clone()
batch = tasksets.test.sample()
evaluation_error, evaluation_accuracy = fast_adapt(batch,
learner,
loss,
adaptation_steps,
shots,
ways,
device)
meta_test_error += evaluation_error.item()
meta_test_accuracy += evaluation_accuracy.item()
print('Meta Test Error', meta_test_error / meta_batch_size)
print('Meta Test Accuracy', meta_test_accuracy / meta_batch_size)
if __name__ == '__main__':
"""
python ~/ultimate-utils/tutorials_for_myself/my_l2l/serial_maml_l2l_hf_vit_simple.py
"""
main()
I got this error:
which I thought was puzzling. I am not doing anything fancy but copying most of the code from the tutorials...so I don't know why I'd get this error. Any ideas?
related: https://github.com/pytorch/pytorch/issues/73697