learnables / learn2learn

A PyTorch Library for Meta-learning Research
http://learn2learn.net
MIT License
2.66k stars 353 forks source link
few-shot finetuning learn2learn learning2learn maml meta-descent meta-learning meta-optimization meta-rl metalearning pytorch


Test Status arXiv

learn2learn is a software library for meta-learning research.

learn2learn builds on top of PyTorch to accelerate two aspects of the meta-learning research cycle:

learn2learn provides low-level utilities and unified interface to create new algorithms and domains, together with high-quality implementations of existing algorithms and standardized benchmarks. It retains compatibility with torchvision, torchaudio, torchtext, cherry, and any other PyTorch-based library you might be using.

To learn more, see our whitepaper: arXiv:2008.12284

Overview

Resources

Installation

pip install learn2learn

Snippets & Examples

The following snippets provide a sneak peek at the functionalities of learn2learn.

High-level Wrappers

Few-Shot Learning with MAML For more algorithms (ProtoNets, ANIL, Meta-SGD, Reptile, Meta-Curvature, KFO) refer to the examples folder. Most of them can be implemented with with the `GBML` wrapper. (documentation). ~~~python maml = l2l.algorithms.MAML(model, lr=0.1) opt = torch.optim.SGD(maml.parameters(), lr=0.001) for iteration in range(10): opt.zero_grad() task_model = maml.clone() # torch.clone() for nn.Modules adaptation_loss = compute_loss(task_model) task_model.adapt(adaptation_loss) # computes gradient, update task_model in-place evaluation_loss = compute_loss(task_model) evaluation_loss.backward() # gradients w.r.t. maml.parameters() opt.step() ~~~
Meta-Descent with Hypergradient Learn any kind of optimization algorithm with the `LearnableOptimizer`. (example and documentation) ~~~python linear = nn.Linear(784, 10) transform = l2l.optim.ModuleTransform(l2l.nn.Scale) metaopt = l2l.optim.LearnableOptimizer(linear, transform, lr=0.01) # metaopt has .step() opt = torch.optim.SGD(metaopt.parameters(), lr=0.001) # metaopt also has .parameters() metaopt.zero_grad() opt.zero_grad() error = loss(linear(X), y) error.backward() opt.step() # update metaopt metaopt.step() # update linear ~~~

Learning Domains

Custom Few-Shot Dataset Many standardized datasets (Omniglot, mini-/tiered-ImageNet, FC100, CIFAR-FS) are readily available in `learn2learn.vision.datasets`. (documentation) ~~~python dataset = l2l.data.MetaDataset(MyDataset()) # any PyTorch dataset transforms = [ # Easy to define your own transform l2l.data.transforms.NWays(dataset, n=5), l2l.data.transforms.KShots(dataset, k=1), l2l.data.transforms.LoadData(dataset), ] taskset = Taskset(dataset, transforms, num_tasks=20000) for task in taskset: X, y = task # Meta-train on the task ~~~
Environments and Utilities for Meta-RL Parallelize your own meta-environments with `AsyncVectorEnv`, or use the standardized ones. (documentation) ~~~python def make_env(): env = l2l.gym.HalfCheetahForwardBackwardEnv() env = cherry.envs.ActionSpaceScaler(env) return env env = l2l.gym.AsyncVectorEnv([make_env for _ in range(16)]) # uses 16 threads for task_config in env.sample_tasks(20): env.set_task(task) # all threads receive the same task state = env.reset() # use standard Gym API action = my_policy(env) env.step(action) ~~~

Low-Level Utilities

Differentiable Optimization Learn and differentiate through updates of PyTorch Modules. (documentation) ~~~python model = MyModel() transform = l2l.optim.KroneckerTransform(l2l.nn.KroneckerLinear) learned_update = l2l.optim.ParameterUpdate( # learnable update function model.parameters(), transform) clone = l2l.clone_module(model) # torch.clone() for nn.Modules error = loss(clone(X), y) updates = learned_update( # similar API as torch.autograd.grad error, clone.parameters(), create_graph=True, ) l2l.update_module(clone, updates=updates) loss(clone(X), y).backward() # Gradients w.r.t model.parameters() and learned_update.parameters() ~~~

Changelog

A human-readable changelog is available in the CHANGELOG.md file.

Citation

To cite the learn2learn repository in your academic publications, please use the following reference.

Arnold, Sebastien M. R., Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas Zarkias. 2020. “learn2learn: A Library for Meta-Learning Research.” arXiv [cs.LG]. http://arxiv.org/abs/2008.12284.

You can also use the following Bibtex entry.

@article{Arnold2020-ss,
  title         = "learn2learn: A Library for {Meta-Learning} Research",
  author        = "Arnold, S{\'e}bastien M R and Mahajan, Praateek and Datta,
                   Debajyoti and Bunner, Ian and Zarkias, Konstantinos Saitas",
  month         =  aug,
  year          =  2020,
  url           = "http://arxiv.org/abs/2008.12284",
  archivePrefix = "arXiv",
  primaryClass  = "cs.LG",
  eprint        = "2008.12284"
}

Acknowledgements & Friends

  1. TorchMeta is similar library, with a focus on datasets for supervised meta-learning.
  2. higher is a PyTorch library that enables differentiating through optimization inner-loops. While they monkey-patch nn.Module to be stateless, learn2learn retains the stateful PyTorch look-and-feel. For more information, refer to their ArXiv paper.
  3. We are thankful to the following open-source implementations which helped guide the design of learn2learn: