Yinglong Li, Jiacheng Li, Zhiwei Xiong
Updating! Any questions, please contact me at any time.
task | training dataset | testing dataset |
---|---|---|
super-resolution | DIV2K | Set5, Set14, BSDS100, Urban100, Manga109 |
denoising | DIV2K | Set12, BSD68 |
deblocking | DIV2K | Classic5, LIVE1 |
deblurring | GoPro | GoPro test set |
Some pretrained LUTs and their compressed version can be download here.
Let's take the SPF-LUT for x4 sr as an example.
cd sr
python 1_train_model.py --model SPF_LUT_net --scale 4 --modes sdy --expDir ../models/spf_lut_x4 --trainDir ../data/DIV2K --valDir ../data/SRBenchmark
The trained LUT network will be available under the ../models/spf_lut_x4
directory.
python .\2_compress_lut_from_net.py --model SPF_LUT_net --scale 4 --modes sdy --expDir ../models/spf_lut_x4 --lutName spf_lut_x4 --cd xyzt --dw 2 --si 5
The compressed LUTs will be available under the ../models/spf_lut_x4
directory. --cd
: The number of compressed dimensions; --dw
: Diagonal width; --si
: Sampling interval of non-diagonal subsampling.
python 3_finetune_lut.py --model SPF_LUT_DFC --scale 4 --modes sdy --expDir ../models/spf_lut_x4 --trainDir ../data/DIV2K --valDir ../data/SRBenchmark --load_lutName spf_lut_x4 --cd xyzt --dw 2 --si 5
The finetuned compressed LUTs will be available under the ../models/spf_lut_x4
directory.
python .\4_test_SPF-LUT_DFC.py --scale 4 --modes sdy --expDir ../models/spf_lut_x4 --testDir ../data/SRBenchmark --lutName weight --cd xyzt --dw 2 --si 5
If you have any questions, feel free to contact me any time by e-mail yllee@mail.ustc.edu.cn
If you found our implementation useful, please consider citing our paper:
@InProceedings{Li_2024_CVPR,
author = {Li, Yinglong and Li, Jiacheng and Xiong, Zhiwei},
title = {Look-Up Table Compression for Efficient Image Restoration},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June}, year = {2024}, pages = {26016-26025}
}
This work is based on the following works, thank the authors a lot.