ASDF is a cache oriented string based JSON representation. Besides, it is a convenient Json Library for D that gets out of your way. ASDF is specially geared towards transforming high volumes of JSON dataframes, either to new JSON Objects or to custom data types.
asdf was originally developed at Tamedia to extract and transform real-time click streams.
see also github.com/tamediadigital/je a tool for fast extraction of json properties into a csv/tsv.
serializeToJson
( or serializeToJsonPretty
for pretty printing! )/+dub.sdl:
dependency "asdf" version="~>0.2.5"
#turns on SSE4.2 optimizations when compiled with LDC
dflags "-mattr=+sse4.2" platform="ldc"
+/
import asdf;
struct Simple
{
string name;
ulong level;
}
void main()
{
auto o = Simple("asdf", 42);
string data = `{"name":"asdf","level":42}`;
assert(o.serializeToJson() == data);
assert(data.deserialize!Simple == o);
}
See ASDF API and Specification.
Dub is D's package manager. You can create a new project with:
dub init <project-name>
Now you need to edit the dub.json
add asdf
as dependency and set its targetType to executable
.
(dub.json)
{
...
"dependencies": {
"asdf": "~><current-version>"
},
"targetType": "executable",
"dflags-ldc": ["-mcpu=native"]
}
(dub.sdl)
dependency "asdf" version="~><current-version>"
targetType "executable"
dflags "-mcpu=native" platform="ldc"
Now you can create a main file in the source
and run your code with
dub
Flags --build=release
and --compiler=ldmd2
can be added for a performance boost:
dub --build=release --compiler=ldmd2
ldmd2
is a shell on top of LDC (LLVM D Compiler).
"dflags-ldc": ["-mcpu=native"]
allows LDC to optimize ASDF for your CPU.
Instead of using -mcpu=native
, you may specify an additional instruction set for a target with -mattr
.
For example, -mattr=+sse4.2
. ASDF has specialized code for
[SSE4.2](https://en.wikipedia.org/wiki/SSE4#SSE4.2 instruction set).
uda | function |
---|---|
@serdeKeys("bar_common", "bar") |
tries to read the data from either property. saves it to the first one |
@serdeKeysIn("a", "b") |
tries to read the data from a , then b . last one occuring in the json wins |
@serdeKeyOut("a") |
writes it to a |
@serdeIgnore |
ignore this property completely |
@serdeIgnoreIn |
don't read this property |
@serdeIgnoreOut |
don't write this property |
@serdeIgnoreOutIf!condition |
run function condition on serialization and don't write this property if the result is true |
@serdeScoped |
Dangerous! non allocating strings. this means data can vanish if the underlying buffer is removed. |
@serdeProxy!string |
call to!string |
@serdeTransformIn!fin |
call function fin to transform the data |
@serdeTransformOut!fout |
run function fout on serialization, different notation |
@serdeAllowMultiple |
Allows deserialiser to serialize multiple keys for the same object member input. |
@serdeOptional |
Allows deserialiser to to skip member desrization of no keys corresponding keys input. |
Please also look into the Docs or Unittest for concrete examples!
import std.algorithm;
import std.stdio;
import asdf;
void main()
{
auto target = Asdf("red");
File("input.jsonl")
// Use at least 4096 bytes for real world apps
.byChunk(4096)
// 32 is minimum size for internal buffer. Buffer can be reallocated to get more memory.
.parseJsonByLine(4096)
.filter!(object => object
// opIndex accepts array of keys: {"key0": {"key1": { ... {"keyN-1": <value>}... }}}
["colors"]
// iterates over an array
.byElement
// Comparison with ASDF is little bit faster
// than comparison with a string.
.canFind(target))
//.canFind("red"))
// Formatting uses internal buffer to reduce system delegate and system function calls
.each!writeln;
}
Single object per line: 4th and 5th lines are broken.
null
{"colors": ["red"]}
{"a":"b", "colors": [4, "red", "string"]}
{"colors":["red"],
"comment" : "this is broken (multiline) object"}
{"colors": "green"}
{"colors": "red"]}}
[]
{"colors":["red"]}
{"a":"b","colors":[4,"red","string"]}
struct S
{
string a;
long b;
private int c; // private fields are ignored
package int d; // package fields are ignored
// all other fields in JSON are ignored
}
struct S
{
// ignored
@serdeIgnore int temp;
// can be formatted to json
@serdeIgnoreIn int a;
//can be parsed from json
@serdeIgnoreOut int b;
// ignored if negative
@serdeIgnoreOutIf!`a < 0` int c;
}
struct S
{
// key is overrided to "aaa"
@serdeKeys("aaa") int a;
// overloads multiple keys for parsing
@serdeKeysIn("b", "_b")
// overloads key for generation
@serdeKeyOut("_b_")
int b;
}
struct DateTimeProxy
{
DateTime datetime;
alias datetime this;
SerdeException deserializeFromAsdf(Asdf data)
{
string val;
if (auto exc = deserializeScopedString(data, val))
return exc;
this = DateTimeProxy(DateTime.fromISOString(val));
return null;
}
void serialize(S)(ref S serializer)
{
serializer.putValue(datetime.toISOString);
}
}
//serialize a Doubly Linked list into an Array
struct SomeDoublyLinkedList
{
@serdeIgnore DList!(SomeArr[]) myDll;
alias myDll this;
//no template but a function this time!
void serialize(ref AsdfSerializer serializer)
{
auto state = serializer.listBegin();
foreach (ref elem; myDll)
{
serializer.elemBegin;
serializer.serializeValue(elem);
}
serializer.listEnd(state);
}
}
struct S
{
@serdeProxy!DateTimeProxy DateTime time;
}
@serdeProxy!ProxyE
enum E
{
none,
bar,
}
// const(char)[] doesn't reallocate ASDF data.
@serdeProxy!(const(char)[])
struct ProxyE
{
E e;
this(E e)
{
this.e = e;
}
this(in char[] str)
{
switch(str)
{
case "NONE":
case "NA":
case "N/A":
e = E.none;
break;
case "BAR":
case "BR":
e = E.bar;
break;
default:
throw new Exception("Unknown: " ~ cast(string)str);
}
}
string toString()
{
if (e == E.none)
return "NONE";
else
return "BAR";
}
E opCast(T : E)()
{
return e;
}
}
unittest
{
assert(serializeToJson(E.bar) == `"BAR"`);
assert(`"N/A"`.deserialize!E == E.none);
assert(`"NA"`.deserialize!E == E.none);
}
If you need to do additional calculations or etl transformations that happen to depend on the deserialized data use the finalizeDeserialization
method.
struct S
{
string a;
int b;
@serdeIgnoreIn double sum;
void finalizeDeserialization(Asdf data)
{
auto r = data["c", "d"];
auto a = r["e"].get(0.0);
auto b = r["g"].get(0.0);
sum = a + b;
}
}
assert(`{"a":"bar","b":3,"c":{"d":{"e":6,"g":7}}}`.deserialize!S == S("bar", 3, 13));