limteng-rpi / neural_name_tagging

Code for "Reliability-aware Dynamic Feature Composition for Name Tagging" (ACL2019)
37 stars 5 forks source link
acl2019 information-extraction lstm-crf name-tagging named-entity-recognition ner neural nlp pytorch

Dynamic Feature Composition for Name Tagging

Code for our ACL2019 paper Reliability-aware Dynamic Feature Composition for Name Tagging.

Input Data Set Directory Structure

Note:

Pre-processing

The following functions in proprocess.py can be used to create vocab and frequency files.

Train LSTM-CNN

python train_lstmcnn_all.py -d 0 -i <input_dir> -o <output_dir> -e <embedding_file>
  --embed_vocab <embedding_vocab_file> --char_dim 50 --seed <random_seed>

This script train a model for each subset (which can be specified with the --datasets argument) and report within-subset (within-genre) and cross-subset (cross-genre) performance.

Train LSTM-CNN with Dynamic Feature Composition

python train_lstmcnn_dfc_all.py -d 0 -i <input_dir> -o <output_dir> -e <embedding_file>
  --embed_vocab <embedding_vocab_file> --embed_count <embedding_freq_file> --char_dim 50 --seed <random_seed>

Requirement

Resources

Reference

Lin, Y., Liu, L., Ji, H., Yu, D., Han, J. (2019) Reliability-aware Dynamic Feature Composition for Name Tagging. Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics.

@article{lin2019reliability,
  title={Reliability-aware Dynamic Feature Composition for Name Tagging},
  author={Lin, Ying and Liu, Liyuan and Ji, Heng and Yu, Dong and Han, Jiawei},
  booktitle={Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL2019)},
  year={2019}
}