lingtengqiu / Yolo_Nano

Pytorch implementation of yolo_Nano for pedestrian detection
140 stars 15 forks source link

PyTorch-YOLO_Nano

A minimal PyTorch implementation of YOLO_Nano

Better Para:
--epochs 120
--batch_size 8
--model_def ./config/yolo-nano_person.cfg
--lr 2.5e-4
--fix_up True
--lr_policy cosine

## Testing
```bash
python test.py --data_config ./config/coco_person.data --model_def ./config/yolo-nano_person.cfg --weights_path [checkpoint path]

Result

In this engineer we only train our model using coco-train person class
we compare with yolov-3,yolo-tiny. We got competitive results.

Methods mAP@50 mAP weights FPS Model
yolov3(paper) 74.4 40.3 204.8M 28.6FPS Google Disk
yolov3-tiny(paper) 38.8 15.6 35.4M 45FPS Google Disk
yolo-nano 55.6 27.7 22.0M 40FPS Baidu WebDisk

Baidu WebDisk Key: p2j3

Ablation Result

Augmentation fixup mAP
No No 54.3
Yes No 53.9
No YES 55.6
YES YES 54.8

Inference Result

Pipeline