lipku / LiveTalking

Real time interactive streaming digital human
https://livetalking-doc.readthedocs.io/
Apache License 2.0
3.99k stars 576 forks source link
aigc digihuman digital-human er-nerf lip-sync metahuman-stream musetalk nerf realtime streaming talking-head virtualhumans wav2lip

Real time interactive streaming digital human, realize audio video synchronous dialogue. It can basically achieve commercial effects.
实时交互流式数字人,实现音视频同步对话。基本可以达到商用效果

ernerf效果 musetalk效果 wav2lip效果

为避免与3d数字人混淆,原项目metahuman-stream改名为livetalking,原有链接地址继续可用

Features

  1. 支持多种数字人模型: ernerf、musetalk、wav2lip
  2. 支持声音克隆
  3. 支持数字人说话被打断
  4. 支持全身视频拼接
  5. 支持rtmp和webrtc
  6. 支持视频编排:不说话时播放自定义视频

1. Installation

Tested on Ubuntu 20.04, Python3.10, Pytorch 1.12 and CUDA 11.3

1.1 Install dependency

conda create -n nerfstream python=3.10
conda activate nerfstream
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
#如果不训练ernerf模型,不需要安装下面的库
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0
pip install --upgrade "protobuf<=3.20.1"

如果用pytorch2.1,torchvision用0.16(可以去torchvision官网根据pytorch版本找匹配的),cudatoolkit可以不用装
安装常见问题FAQ
linux cuda环境搭建可以参考这篇文章 https://zhuanlan.zhihu.com/p/674972886

2. Quick Start

默认采用ernerf模型,webrtc推流到srs

2.1 运行srs

export CANDIDATE='<服务器外网ip>'
docker run --rm --env CANDIDATE=$CANDIDATE \
  -p 1935:1935 -p 8080:8080 -p 1985:1985 -p 8000:8000/udp \
  registry.cn-hangzhou.aliyuncs.com/ossrs/srs:5 \
  objs/srs -c conf/rtc.conf

2.2 启动数字人:

python app.py

如果访问不了huggingface,在运行前

export HF_ENDPOINT=https://hf-mirror.com

用浏览器打开http://serverip:8010/rtcpushapi.html, 在文本框输入任意文字,提交。数字人播报该段文字
备注:服务端需要开放端口 tcp:8000,8010,1985; udp:8000

3. More Usage

使用说明: https://livetalking-doc.readthedocs.io/

4. Docker Run

不需要前面的安装,直接运行。

docker run --gpus all -it --network=host --rm registry.cn-beijing.aliyuncs.com/codewithgpu2/lipku-metahuman-stream:vjo1Y6NJ3N

代码在/root/metahuman-stream,先git pull拉一下最新代码,然后执行命令同第2、3步

提供如下镜像

5. 性能分析

  1. 帧率
    在Tesla T4显卡上测试整体fps为18左右,如果去掉音视频编码推流,帧率在20左右。用4090显卡可以达到40多帧/秒。
  2. 延时
    整体延时3s左右
    (1)tts延时1.7s左右,目前用的edgetts,需要将每句话转完后一次性输入,可以优化tts改成流式输入
    (2)wav2vec延时0.4s,需要缓存18帧音频做计算 (3)srs转发延时,设置srs服务器减少缓冲延时。具体配置可看 https://ossrs.net/lts/zh-cn/docs/v5/doc/low-latency

6. TODO


如果本项目对你有帮助,帮忙点个star。也欢迎感兴趣的朋友一起来完善该项目.