This repository contains the implementation of Unsupervised Person Re-identification with Stochastic Training Strategy. Our code is based on SPCL and person-re-ranking.
cd examples/data
Download the datasets DukeMTMC-reID, Market-1501, MSMT17. Then unzip them under the directory like
/examples/data
├── dukemtmc
│ └── DukeMTMC-reID
├── market1501
│ └── Market-1501-v15.09.15
├── msmt17
│ └── MSMT17_V1
ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.
We utilize 4 GTX-1080TI GPUs for training. Note that
--eps 0.7
(default) for MSMT17, and --eps 0.5
for DukeMTMC-reID, Market-1501;# DukeMTMC-reID
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/train_usl.py -d dukemtmc --eps 0.5 --logs-dir logs/duke_resnet50
# Market-1501
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/train_usl.py -d market1501 --eps 0.5 --logs-dir logs/market_resnet50
# MSMT17_V1
CUDA_VISIBLE_DEVICES=0,1,2,3 python examples/train_usl.py -d msmt17 --eps 0.7 --logs-dir logs/msmt_resnet50