简体中文 | English
InsightFacePaddle
is an open source deep face detection and recognition toolkit, powered by PaddlePaddle. InsightFacePaddle
provide three related pretrained models now, include BlazeFace
for face detection, ArcFace
and MobileFace
for face recognition.
PaddleInfernence
.For face detection task, on WiderFace dataset, the following table shows mAP, speed and time cost for BlazeFace.
Model structure | Model size | WiderFace mAP | CPU time cost | GPU time cost |
---|---|---|---|---|
BlazeFace-FPN-SSH-Paddle | 0.65MB | 0.9187/0.8979/0.8168 | 31.7ms | 5.6ms |
RetinaFace | 1.68MB | -/-/0.825 | 182.0ms | 17.4ms |
For face recognition task, on MSAM dataset, the following table shows precision, speed and time cost for MobileFaceNet.
Model structure | lfw | cfp_fp | agedb30 | CPU time cost | GPU time cost |
---|---|---|---|---|---|
MobileFaceNet-Paddle | 0.9945 | 0.9343 | 0.9613 | 4.3ms | 2.3ms |
MobileFaceNet-mxnet | 0.9950 | 0.8894 | 0.9591 | 7.3ms | 4.7ms |
Benchmark environment:
Note: Performance of RetinaFace
is tested using script test.py. The image shape is modified to 640x480
here. Performance of MobileFaceNet-mxnet
is tested using script verification.py.
One example result predicted by InsightFacePaddle
is as follow. Please refer to the Demo for more.
Scan the QR code below with your QQ (QQ group number: 705899115
) to discuss more about deep learning together.
PaddlePaddle 2.1 or later is required for InsightFacePaddle
. You can use the following steps to install PaddlePaddle.
# for GPU
pip3 install paddlepaddle-gpu
# for CPU
pip3 install paddlepaddle
For more details about installation. please refer to PaddlePaddle.
InsightFacePaddle
dependencies are listed in requirements.txt
, you can use the following command to install the dependencies.
pip3 install --upgrade -r requirements.txt -i https://mirror.baidu.com/pypi/simple
InsightFacePaddle
pip
to install the lastest version InsightFacePaddle
from pypi
.pip3 install --upgrade insightface-paddle
cd ./InsightFacePaddle
python3 setup.py bdist_wheel
pip3 install dist/*
InsightFacePaddle
support two ways of use, including Commad Line
and Python API
.
You can use InsightFacePaddle
in Command Line.
You can get the help about InsightFacePaddle
by following command.
insightfacepaddle -h
The args are as follows: | args | type | default | help |
---|---|---|---|---|
det_model | str | BlazeFace | The detection model. | |
rec_model | str | MobileFace | The recognition model. | |
use_gpu | bool | True | Whether use GPU to predict. Default by True . |
|
enable_mkldnn | bool | False | Whether use MKLDNN to predict, valid only when --use_gpu is False . Default by False . |
|
cpu_threads | int | 1 | The num of threads with CPU, valid only when --use_gpu is False and --enable_mkldnn is True . Default by 1 . |
|
input | str | - | The path of video to be predicted. Or the path or directory of image file(s) to be predicted. | |
output | str | - | The directory to save prediction result. | |
det | bool | False | Whether to detect. | |
det_thresh | float | 0.8 | The threshold of detection postprocess. Default by 0.8 . |
|
rec | bool | False | Whether to recognize. | |
index | str | - | The path of index file. | |
cdd_num | int | 5 | The number of candidates in the recognition retrieval. Default by 5 . |
|
rec_thresh | float | 0.45 | The threshold of match in recognition, use to remove candidates with low similarity. Default by 0.45 . |
|
max_batch_size | int | 1 | The maxium of batch_size to recognize. Default by 1 . |
|
build_index | str | - | The path of index to be build. | |
img_dir | str | - | The img(s) dir used to build index. | |
label | str | - | The label file path used to build index. |
If use recognition, before start predicting, you have to build the index.
insightfacepaddle --build_index ./demo/friends/index.bin --img_dir ./demo/friends/gallery --label ./demo/friends/gallery/label.txt
An example used to build index is as follows:
Use the image below to predict:
The prediction command:
insightfacepaddle --det --input ./demo/friends/query/friends1.jpg --output ./output
The result is under the directory ./output
:
insightfacepaddle --det --input ./demo/friends/query/friends.mp4 --output ./output
Use the image below to predict:
The prediction command:
insightfacepaddle --rec --index ./demo/friends/index.bin --input ./demo/friends/query/Rachel.png
The result is output in the terminal:
INFO:root:File: Rachel., predict label(s): ['Rachel']
Use the image below to predict:
The prediction command:
insightfacepaddle --det --rec --index ./demo/friends/index.bin --input ./demo/friends/query/friends2.jpg --output ./output
The result is under the directory ./output
:
insightfacepaddle --det --rec --index ./demo/friends/index.bin --input ./demo/friends/query/friends.mp4 --output ./output
You can use InsightFacePaddle
in Python. First, import InsightFacePaddle
and logging
because InsightFacePaddle
using that to control log.
import insightface_paddle as face
import logging
logging.basicConfig(level=logging.INFO)
parser = face.parser()
help_info = parser.print_help()
print(help_info)
parser = face.parser()
args = parser.parse_args()
args.build_index = "./demo/friends/index.bin"
args.img_dir = "./demo/friends/gallery"
args.label = "./demo/friends/gallery/label.txt"
predictor = face.InsightFace(args)
predictor.build_index()
parser = face.parser()
args = parser.parse_args()
args.det = True args.output = "./output" input_path = "./demo/friends/query/friends1.jpg"
predictor = face.InsightFace(args) res = predictor.predict(input_path) print(next(res))
* NumPy
```python
import cv2
parser = face.parser()
args = parser.parse_args()
args.det = True
args.output = "./output"
path = "./demo/friends/query/friends1.jpg"
img = cv2.imread(path)[:, :, ::-1]
predictor = face.InsightFace(args)
res = predictor.predict(img)
print(next(res))
The prediction result saved as "./output/tmp.png"
.
parser = face.parser()
args = parser.parse_args()
args.det = True args.output = "./output" input_path = "./demo/friends/query/friends.mp4"
predictor = face.InsightFace(args) res = predictor.predict(inputpath) for in res: print(_)
2. Recognition only
* Image(s)
```python
parser = face.parser()
args = parser.parse_args()
args.rec = True
args.index = "./demo/friends/index.bin"
input_path = "./demo/friends/query/Rachel.png"
predictor = face.InsightFace(args)
res = predictor.predict(input_path, print_info=True)
next(res)
import cv2
parser = face.parser() args = parser.parse_args()
args.rec = True args.index = "./demo/friends/index.bin" path = "./demo/friends/query/Rachel.png" img = cv2.imread(path)[:, :, ::-1]
predictor = face.InsightFace(args) res = predictor.predict(img, print_info=True) next(res)
3. Detection and recognition
* Image(s)
```python
parser = face.parser()
args = parser.parse_args()
args.det = True
args.rec = True
args.index = "./demo/friends/index.bin"
args.output = "./output"
input_path = "./demo/friends/query/friends2.jpg"
predictor = face.InsightFace(args)
res = predictor.predict(input_path, print_info=True)
next(res)
import cv2
parser = face.parser() args = parser.parse_args()
args.det = True args.rec = True args.index = "./demo/friends/index.bin" args.output = "./output" path = "./demo/friends/query/friends2.jpg" img = cv2.imread(path)[:, :, ::-1]
predictor = face.InsightFace(args) res = predictor.predict(img, print_info=True) next(res)
The prediction result saved as `"./output/tmp.png"`.
* Video
```python
parser = face.parser()
args = parser.parse_args()
args.det = True
args.rec = True
args.index = "./demo/friends/index.bin"
args.output = "./output"
input_path = "./demo/friends/query/friends.mp4"
predictor = face.InsightFace(args)
res = predictor.predict(input_path, print_info=True)
for _ in res:
pass