llyx97 / FETV

[NeurIPS 2023 Datasets and Benchmarks] "FETV: A Benchmark for Fine-Grained Evaluation of Open-Domain Text-to-Video Generation", Yuanxin Liu, Lei Li, Shuhuai Ren, Rundong Gao, Shicheng Li, Sishuo Chen, Xu Sun, Lu Hou
48 stars 2 forks source link

FETV: A Benchmark for Fine-Grained Evaluation of Open-Domain Text-to-Video Generation

Yuanxin Liu1Lei Li1Shuhuai Ren1  RunDong Gao1Shicheng Li1
Sishuo Chen1Xu Sun1Lu Hou2
1Peking University  2Huawei Noah’s Ark Lab
## News 🚀 **[2023-12]** Release evaluation code to [FETV-EVAL](https://github.com/llyx97/FETV-EVAL). **[2023-11]** Update more detailed information about FETV data and evaluation results. ## Overview - [The **FETV** benchmark](#fetv) - [Manual evaluation of T2V generation models](#manual_eval) - [Diagnosis of automatic T2V generation metrics](#auto_eval) ## FETV Benchmark FETV consist of a diverse set of text prompts, categorized based on three orthogonal aspects: **major content**, **attribute control**, and **prompt complexity**. This enables fine-grained evaluation of T2V generation models. ![](./Figures/categorization.png) ### Data Instances All FETV data are all available in the file `fetv_data.json`. Each line is a data instance, which is formatted as: ``` { "video_id": "1006807024", "prompt": "A mountain stream", "major content": { "spatial": ["scenery & natural objects"], "temporal": ["fluid motions"] }, "attribute control": { "spatial": null, "temporal": null }, "prompt complexity": ["simple"], "source": "WebVid", "video_url": "https://ak.picdn.net/shutterstock/videos/1006807024/preview/stock-footage-a-mountain-stream.mp4", "unusual type": null } ``` **Temporal Major Contents** ![](./Figures/example_temporal_content.png) **Temporal Attributes to Control** ![](./Figures/example_temporal_attribute.png) **Spatial Major Contents** ![](./Figures/example_spatial_content.png) **Spatial Attributes to Control** ![](./Figures/example_spatial_attribute.png) ### Data Fields * "video_id": The video identifier in the original dataset where the prompt comes from. * "prompt": The text prompt for text-to-video generation. * "major content": The major content described in the prompt. * "attribute control": The attribute that the prompt aims to control. * "prompt complexity": The complexity of the prompt. * "source": The original dataset where the prompt comes from, which can be "WebVid", "MSRVTT" or "ours". * "video_url": The url link of the reference video. * "unusual type": The type of unusual combination the prompt involves. Only available for data instances with `"source": "ours"`. ### Dataset Statistics FETV contains 619 text prompts. The data distributions over different categories are as follows (the numbers over categories do not sum up to 619 because a data instance can belong to multiple categories) ![](./Figures/content_attribute_statistics.png) ![](./Figures/complexity_statistics.png) ## Manual Evaluation of Text-to-video Generation Models We evaluate four T2V models, namely [CogVideo](https://github.com/THUDM/CogVideo), [Text2Video-zero](https://github.com/Picsart-AI-Research/Text2Video-Zero), [ModelScopeT2V](https://modelscope.cn/models/damo/text-to-video-synthesis/summary) and [ZeroScope](https://huggingface.co/cerspense/zeroscope_v2_576w). The generated and ground-truth videos are manually evaluated from four perspectives: **static quality**, **temporal quality**, **overall alignment** and **fine-grained alignment**. Examples of generated videos and manual ratings can be found [here](https://github.com/llyx97/FETV/tree/main/generated_video_examples) **Results of static and temporal video quality** ![](./Figures/manual_result_quality.jpg) **Results of video-text alignment** ![](./Figures/manual_result_alignment.jpg) ## Diagnosis of Automatic Text-to-video Generation Metrics We develop automatic metrics for video quality and video-text alignment based on the [UMT](https://github.com/opengvlab/unmasked_teacher) model, which exhibit higher correlation with humans than existing metrics. **Video-text alignment evaluation correlation with human** ![](./Figures/alignment_correlation.jpg) **Video-text alignment ranking correlation with human** ![](./Figures/alignment_rank_correlation.png) PS: The above video-text correlation results are slightly different from the previous version because we fixed some bugs in calculating BLIPScore and CLIPscore. The advantage of UMTScore is more obvious in the updated results. **Video-text alignment ranking example** ![](./Figures/alignment_rank_example.jpg) **Video quality ranking correlation with human** ![](./Figures/video_quality_rank_correlation.jpg) ## Todo - [x] Upload evaluation codes. ## License This dataset is under [CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) license. ## Citation ```bibtex @article{liu2023fetv, title = {FETV: A Benchmark for Fine-Grained Evaluation of Open-Domain Text-to-Video Generation}, author = {Yuanxin Liu and Lei Li and Shuhuai Ren and Rundong Gao and Shicheng Li and Sishuo Chen and Xu Sun and Lu Hou}, year = {2023}, journal = {arXiv preprint arXiv: 2311.01813} } ```