lmnt-com / diffwave

DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.
Apache License 2.0
778 stars 113 forks source link
deep-learning diffwave machine-learning neural-network paper pretrained-models pytorch speech speech-synthesis text-to-speech tts vocoder

DiffWave

PyPI Release License

We're hiring! If you like what we're building here, come join us at LMNT.

DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via iterative refinement. The speech can be controlled by providing a conditioning signal (e.g. log-scaled Mel spectrogram). The model and architecture details are described in DiffWave: A Versatile Diffusion Model for Audio Synthesis.

What's new (2021-11-09)

What's new (2021-04-01)

What's new (2020-10-14)

Status (2021-11-09)

Big thanks to Zhifeng Kong (lead author of DiffWave) for pointers and bug fixes.

Audio samples

22.05 kHz audio samples

Pretrained models

22.05 kHz pretrained model (31 MB, SHA256: d415d2117bb0bba3999afabdd67ed11d9e43400af26193a451d112e2560821a8)

This pre-trained model is able to synthesize speech with a real-time factor of 0.87 (smaller is faster).

Pre-trained model details

Install

Install using pip:

pip install diffwave

or from GitHub:

git clone https://github.com/lmnt-com/diffwave.git
cd diffwave
pip install .

Training

Before you start training, you'll need to prepare a training dataset. The dataset can have any directory structure as long as the contained .wav files are 16-bit mono (e.g. LJSpeech, VCTK). By default, this implementation assumes a sample rate of 22.05 kHz. If you need to change this value, edit params.py.

python -m diffwave.preprocess /path/to/dir/containing/wavs
python -m diffwave /path/to/model/dir /path/to/dir/containing/wavs

# in another shell to monitor training progress:
tensorboard --logdir /path/to/model/dir --bind_all

You should expect to hear intelligible (but noisy) speech by ~8k steps (~1.5h on a 2080 Ti).

Multi-GPU training

By default, this implementation uses as many GPUs in parallel as returned by torch.cuda.device_count(). You can specify which GPUs to use by setting the CUDA_DEVICES_AVAILABLE environment variable before running the training module.

Inference API

Basic usage:

from diffwave.inference import predict as diffwave_predict

model_dir = '/path/to/model/dir'
spectrogram = # get your hands on a spectrogram in [N,C,W] format
audio, sample_rate = diffwave_predict(spectrogram, model_dir, fast_sampling=True)

# audio is a GPU tensor in [N,T] format.

Inference CLI

python -m diffwave.inference --fast /path/to/model /path/to/spectrogram -o output.wav

References