Official implementation of "Towards End-to-end Semi-supervised Learning for One-stage Object Detection". OneTeacher is a semi-supervised framework for YOLOV5, which is equiped with two novel designs, namely Multi-view Pseudo-label Refinement and Decoupled Semi-supervised Optimization.
After that, the file structure should look like:
|-- OneTeacher
|-- datasets
|-- coco
|-- images
|-- train2017
|-- val2017
|-- test2017
|-- labels
|-- annotations
|-- instances_train2017.json
|-- instances_val2017.json
python active_sampling/generate_random_supervised_seed_yolo.py --dataset_name 'coco_2017_train' --random_seeds 0,1,2,3,4,5,6,7,8,9 --random_file ./data_processing/COCO_supervision.txt --random_percent 10.0 --output_file ./dataseed/COCO_supervision_10.json
Semi-supervised Learning on COCO 10%
bash script/coco_semi_script.sh 32 2 0,1
Semi-supervised Learning on VOC 25%
bash script/voc_semi_script.sh 32 2 0,1
Fully-supervised Learning on COCO 10%
bash script/coco_fully_script.sh 32 2 0,1
Fully-supervised Learning on VOC 25%
bash script/voc_fully_script.sh 32 2 0,1