Official Repository of the paper: Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference.
Official Repository of the paper: LCM-LoRA: A Universal Stable-Diffusion Acceleration Module.
Project Page: https://latent-consistency-models.github.io
LCM Community: Join our LCM discord channels for discussions. Coders are welcome to contribute.
We support Img2Img now! Try the impressive img2img demos here: Replicate, SD-webui, ComfyUI, Colab
Local gradio for img2img is on the way!
To run the model locally, you can download the "local_gradio" folder:
pip install diffusers transformers accelerate gradio==3.48.0
device="xpu"
in app.py)
python app.py
Ours Hugging Face Demo and Model are released ! Latent Consistency Models are supported in 🧨 diffusers.
LCM Model Download: LCM_Dreamshaper_v7
LCM模型已上传到始智AI(wisemodel) 中文用户可在此下载,下载链接.
For Chinese users, download LCM here: (中文用户可以在此下载LCM模型)
By distilling classifier-free guidance into the model's input, LCM can generate high-quality images in very short inference time. We compare the inference time at the setting of 768 x 768 resolution, CFG scale w=8, batchsize=4, using a A800 GPU.
We have official LCM Pipeline and LCM Scheduler in 🧨 Diffusers library now! The older usages will be deprecated.
You can try out Latency Consistency Models directly on:
To run the model yourself, you can leverage the 🧨 Diffusers library:
Install the library:
pip install --upgrade diffusers # make sure to use at least diffusers >= 0.22
pip install transformers accelerate
Run the model:
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
num_inference_steps = 4
images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
For more information, please have a look at the official docs:
👉 https://huggingface.co/docs/diffusers/api/pipelines/latent_consistency_models#latent-consistency-models
## Usage (Deprecated)
We have official [**LCM Pipeline**](https://github.com/huggingface/diffusers/tree/main/src/diffusers/pipelines/latent_consistency_models) and [**LCM Scheduler**](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_lcm.py) in 🧨 Diffusers library now! The older usages will be deprecated. But you can still use the older usages by adding ```revision="fb9c5d1"``` from ```from_pretrained(...)```
To run the model yourself, you can leverage the 🧨 Diffusers library:
1. Install the library:
pip install diffusers transformers accelerate
2. Run the model:
```py
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main", revision="fb9c5d")
# To save GPU memory, torch.float16 can be used, but it may compromise image quality.
pipe.to(torch_device="cuda", torch_dtype=torch.float32)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4
images = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, lcm_origin_steps=50, output_type="pil").images
LCM:
@misc{luo2023latent,
title={Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference},
author={Simian Luo and Yiqin Tan and Longbo Huang and Jian Li and Hang Zhao},
year={2023},
eprint={2310.04378},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
LCM-LoRA:
@article{luo2023lcm,
title={LCM-LoRA: A Universal Stable-Diffusion Acceleration Module},
author={Luo, Simian and Tan, Yiqin and Patil, Suraj and Gu, Daniel and von Platen, Patrick and Passos, Apolin{\'a}rio and Huang, Longbo and Li, Jian and Zhao, Hang},
journal={arXiv preprint arXiv:2311.05556},
year={2023}
}