An implementation of sequence recommenders based on the wyrm autdifferentiaton library.
sbr
implements efficient recommender algorithms which operate on
sequences of items: given previous items a user has interacted with,
the model will recommend the items the user is likely to interact with
in the future.
Implemented models:
Which model performs the best will depend on your dataset. The EWMA model is much quicker to fit, and will probably be a good starting point.
You can fit a model on the Movielens 100K dataset in about 10 seconds:
let mut data = sbr::datasets::download_movielens_100k().unwrap();
let mut rng = rand::XorShiftRng::from_seed([42; 16]);
let (train, test) = sbr::data::user_based_split(&mut data, &mut rng, 0.2);
let train_mat = train.to_compressed();
let test_mat = test.to_compressed();
println!("Train: {}, test: {}", train.len(), test.len());
let mut model = sbr::models::lstm::Hyperparameters::new(data.num_items(), 32)
.embedding_dim(32)
.learning_rate(0.16)
.l2_penalty(0.0004)
.lstm_variant(sbr::models::lstm::LSTMVariant::Normal)
.loss(sbr::models::Loss::WARP)
.optimizer(sbr::models::Optimizer::Adagrad)
.num_epochs(10)
.rng(rng)
.build();
let start = Instant::now();
let loss = model.fit(&train_mat).unwrap();
let elapsed = start.elapsed();
let train_mrr = sbr::evaluation::mrr_score(&model, &train_mat).unwrap();
let test_mrr = sbr::evaluation::mrr_score(&model, &test_mat).unwrap();
println!(
"Train MRR {} at loss {} and test MRR {} (in {:?})",
train_mrr, loss, test_mrr, elapsed
);
License: MIT