.. image:: pics/nutsml_logo.gif :align: center
Introduction <https://maet3608.github.io/nuts-ml/introduction.html>
_Installation <https://maet3608.github.io/nuts-ml/installation.html>
_Tutorial <https://maet3608.github.io/nuts-ml/tutorial/introduction.html>
_Documentation <https://maet3608.github.io/nuts-ml/>
_Examples <https://github.com/maet3608/nuts-ml/tree/master/nutsml/examples>
_Github <https://github.com/maet3608/nuts-ml>
_nuts-ml is a data pre-processing library for GPU based deep learning that provides common pre-processing functions as independent, reusable units. These so called 'nuts' can be freely arranged to build data flows that are efficient, easy to read and modify.
The following example gives a taste of a nuts-ml data-flow that trains a network on image data and prints training loss and accuracy
.. code:: python
(train_samples >> Stratify(1) >> read_image >> transform >> augment >>
Shuffle(100) >> build_batch >> network.train() >>
Print('train loss:{} acc:{}') >> Consume())
nuts-ml is based on nuts-flow <https://github.com/maet3608/nuts-flow>
,
which is described here <https://maet3608.github.io/nuts-flow/>
.
.. image:: https://badge.fury.io/py/nutsml.svg :target: https://badge.fury.io/py/nutsml
.. image:: https://img.shields.io/pypi/pyversions/nutsml.svg :target: https://pypi.python.org/pypi/nutsml/
.. image:: https://travis-ci.org/maet3608/nuts-ml.svg?branch=master :target: https://travis-ci.org/maet3608/nuts-ml
.. image:: https://coveralls.io/repos/github/maet3608/nuts-ml/badge.png?branch=master :target: https://coveralls.io/github/maet3608/nuts-ml?branch=master
.. image:: https://img.shields.io/github/issues/maet3608/nuts-ml.svg :target: https://github.com/maet3608/nuts-ml/issues
.. image:: https://img.shields.io/badge/license-Apache%202-blue.svg :target: https://github.com/maet3608/nuts-ml/blob/master/LICENSE