malllabiisc / CompGCN

ICLR 2020: Composition-Based Multi-Relational Graph Convolutional Networks
Apache License 2.0
597 stars 107 forks source link
deep-learning graph-convolutional-networks graph-representation-learning iclr2020 link-prediction pytorch relation-embeddings

CompGCN

Composition-Based Multi-Relational Graph Convolutional Networks

Overview of CompGCN ...

Given node and relation embeddings, CompGCN performs a composition operation φ(·) over each edge in the neighborhood of a central node (e.g. Christopher Nolan above). The composed embeddings are then convolved with specific filters WO and WI for original and inverse relations respectively. We omit self-loop in the diagram for clarity. The message from all the neighbors are then aggregated to get an updated embedding of the central node. Also, the relation embeddings are transformed using a separate weight matrix. Please refer to the paper for details.

Dependencies

Dataset:

Training model: