mangoyuan / UAGAN

(MICCAI2019) Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images
4 stars 1 forks source link

Unified Attentional Generative Adversarial Network for Brain Tumor Segmentation From Multimodal Unpaired Images

Installation

Data Preparation

  1. Download the Task01_BrainTumour dataset from Medical Segmentation Decathlon.
  2. Pre-process, save as png files and split train-test list.
    
    cd process

python to_png.py --brain_dir /path/to/Task01_BrainTumour \ --save_dir /path/to/png_dataset \ --crop 200 --resize 128

python split.py --brain_dir /path/to/png_dataset \ --save_dir .


## Train
All model will stop at `max_epoch` and make predictions at the last epoch.
```bash
cd ..
./uagan.sh

Acknowledgement

Part of the code is revised from

Citation

@inproceedings{yuan2019unified,
  title={Unified attentional generative adversarial network for brain tumor segmentation from multimodal unpaired images},
  author={Yuan, Wenguang and Wei, Jia and Wang, Jiabing and Ma, Qianli and Tasdizen, Tolga},
  booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
  pages={229--237},
  year={2019},
  organization={Springer}
}