manub / scalatest-embedded-kafka

A library that provides an in-memory Kafka instance to run your tests against.
MIT License
295 stars 87 forks source link
kafka kafka-streams scala scalatest

Note: This repository is no longer maintained. New versions will be available at https://github.com/embeddedkafka/embedded-kafka and https://github.com/embeddedkafka/embedded-kafka-schema-registry respectively.

scalatest-embedded-kafka

A library that provides an in-memory Kafka instance to run your tests against.

As of version 1.1.1 the library is not dependent anymore on ScalaTest and won't transitively bring ScalaTest into your build.

Inspired by https://github.com/chbatey/kafka-unit

Build Status

Codacy Badge

Gitter chat

License

Version compatibility matrix

scalatest-embedded-kafka is available on Bintray and Maven Central, compiled for both Scala 2.11 and 2.12. Scala 2.10 is supported until 0.10.0. Scala 2.12 is supported from 0.11.0 onwards, following Apache Kafka release cycle.

Currently there's no support for Scala 2.13-Mx as Kafka artifacts are not published for these versions.

Starting from 1.0.0, versions match the version of Kafka they're built against. However in the past there were some mismatches - the easiest way is to check through the git history of the build.sbt file

If you're using Kafka 1.1.0, please use version 1.1.0-kafka1.1-nosr - this version doesn't pull in the Confluent Schema Registry by default

How to use

An example, using ScalaTest:

class MySpec extends WordSpec with EmbeddedKafka {

  "runs with embedded kafka" should {

    "work" in {

      withRunningKafka {
        // ... code goes here
      }
    }
  }
}

Use without the withRunningKafka method

A EmbeddedKafka companion object is provided for usage without extending the EmbeddedKafka trait. Zookeeper and Kafka can be started and stopped in a programmatic way. This is the recommended usage if you have more than one test in your file and you don't want to start and stop Kafka and Zookeeper on every test.

class MySpec extends WordSpec {

  "runs with embedded kafka" should {

    "work" in {
      EmbeddedKafka.start()

      // ... code goes here

      EmbeddedKafka.stop()
    }
  }
}

Please note that in order to avoid Kafka instances not shutting down properly, it's recommended to call EmbeddedKafka.stop() in a after block or in a similar teardown logic.

Configuration

It's possible to change the ports on which Zookeeper and Kafka are started by providing an implicit EmbeddedKafkaConfig

class MySpec extends WordSpec with EmbeddedKafka {

  "runs with embedded kafka on a specific port" should {

    "work" in {
      implicit val config = EmbeddedKafkaConfig(kafkaPort = 12345)

      withRunningKafka {
        // now a kafka broker is listening on port 12345
      }
    }
  }
}

If you want to run ZooKeeper and Kafka on arbitrary available ports, you can use the withRunningKafkaOnFoundPort method. This is useful to make tests more reliable, especially when running tests in parallel or on machines where other tests or services may be running with port numbers you can't control.

class MySpec extends WordSpec with EmbeddedKafka {

  "runs with embedded kafka on arbitrary available ports" should {

    "work" in {
      val userDefinedConfig = EmbeddedKafkaConfig(kafkaPort = 0, zooKeeperPort = 0)

      withRunningKafkaOnFoundPort(userDefinedConfig) { implicit actualConfig =>
        // now a kafka broker is listening on actualConfig.kafkaPort
        publishStringMessageToKafka("topic", "message")
        consumeFirstStringMessageFrom("topic") shouldBe "message"
      }
    }
  }
}

The same implicit EmbeddedKafkaConfig is used to define custom consumer or producer properties

class MySpec extends WordSpec with EmbeddedKafka {

  "runs with custom producer and consumer properties" should {
    "work" in {
      val customBrokerConfig = Map("replica.fetch.max.bytes" -> "2000000",
        "message.max.bytes" -> "2000000")

      val customProducerConfig = Map("max.request.size" -> "2000000")
      val customConsumerConfig = Map("max.partition.fetch.bytes" -> "2000000")

      implicit val customKafkaConfig = EmbeddedKafkaConfig(
        customBrokerProperties = customBrokerConfig,
        customProducerProperties = customProducerConfig,
        customConsumerProperties = customConsumerConfig)

      withRunningKafka {
        // now a kafka broker is listening on port 12345
      }
    }
  }
}

This works for withRunningKafka, withRunningKafkaOnFoundPort, and EmbeddedKafka.start()

Also, it is now possible to provide custom properties to the broker while starting Kafka. EmbeddedKafkaConfig has a customBrokerProperties field which can be used to provide extra properties contained in a Map[String, String]. Those properties will be added to the broker configuration, be careful some properties are set by the library itself and in case of conflict the customBrokerProperties values will take precedence. Please look at the source code to see what these properties are.

Utility methods

The EmbeddedKafka trait provides also some utility methods to interact with the embedded kafka, in order to set preconditions or verifications in your specs:

def publishToKafka(topic: String, message: String): Unit

def consumeFirstMessageFrom(topic: String): String

def createCustomTopic(topic: String, topicConfig: Map[String,String], partitions: Int, replicationFactor: Int): Unit

Custom producers

It is possible to create producers for custom types in two ways:

For more information about how to use the utility methods, you can either look at the Scaladocs or at the tests of this project.

Custom consumers

Use the Consumers trait that easily creates consumers of arbitrary key-value types and manages their lifecycle (via a loaner pattern).

Easy message consumption

With ConsumerExtensions you can turn a consumer to a Scala lazy Stream of T and treat it as a collection for easy assertion.

import net.manub.embeddedkafka.ConsumerExtensions._
import net.manub.embeddedkafka.Codecs.stringKeyValueCrDecoder
...
consumer.consumeLazily[(String, String)]("from-this-topic").take(3).toList should be (Seq(
  "1" -> "one", 
  "2" -> "two", 
  "3" -> "three"
)

scalatest-embedded-kafka-streams

A library that builds on top of scalatest-embedded-kafka to offer easy testing of Kafka Streams.

It takes care of instantiating and starting your streams as well as closing them after running your test-case code.

How to use

import net.manub.embeddedkafka.ConsumerExtensions._
import net.manub.embeddedkafka.streams.EmbeddedKafkaStreamsAllInOne
import org.apache.kafka.streams.StreamsBuilder
import org.scalatest.{Matchers, WordSpec}

class MySpec extends WordSpec with Matchers with EmbeddedKafkaStreamsAllInOne {
  "my kafka stream" should {
    "be easy to test" in {
      val inputTopic = "input-topic"
      val outputTopic = "output-topic"
      // your code for building the stream goes here e.g.
      val streamBuilder = new StreamsBuilder
      streamBuilder.stream(inputTopic).to(outputTopic)
      // tell the stream test
      // 1. what topics need to be created before the stream starts
      // 2. the stream topology to be used for initializing and starting the stream
      runStreamsWithStringConsumer(
        topicsToCreate = Seq(inputTopic, outputTopic),
        topology = streamBuilder.build()
      ){ consumer =>
        // your test code goes here
        publishToKafka(inputTopic, key = "hello", message = "world")
        consumer.consumeLazily[String](outputTopic).head should be ("hello" -> "world")
      }
    }
  }
}

scalatest-embedded-schema-registry

If you need to serialize and deserialize messages using Avro, a Confluent Schema Registry instance can be provided to test your code.

How to use

class MySpec extends WordSpec with EmbeddedKafkaWithSchemaRegistry {

  "runs with embedded kafka and Schema Registry" should {

    "work" in {
      implicit val config = EmbeddedKafkaConfigWithSchemaRegistryImpl()

      withRunningKafka {
        // ... code goes here
      }
    }
  }
}

Utility methods

The net.manub.embeddedkafka.avro.schemaregistry package object provides useful implicit converters for testing with Avro and Schema Registry.

Using streams