Scipy's dendrogram for agglomerative clustering requires extensive customizations to make it more informative. This package wraps scipy's dendrogram with two customizations:
* Timeseries graph at the side
* Distance labels and cluster split points
.. code:: bash
pip install dendrogram-ts
Plot by Maximum Clusters
.. code:: python
from dendrogram_ts import maxclust_draw
plt.style.use('seaborn-whitegrid')
plt.figure(figsize=(8,5));
maxclust_draw(df, 'ward', 'euclidean', max_cluster=10, ts_hspace=2)
.. figure:: https://github.com/mapattacker/dendrogram-ts/blob/master/images/dendrogram1.png?raw=true :width: 650px :align: center
Plot by Color Threshold
.. code:: python
from dendrogram_ts import colorclust_draw
import matplotlib as mpl
mpl.rcParams['lines.linewidth'] = 1
plt.style.use('seaborn-white')
plt.figure(figsize=(12,10))
colorclust_draw(df, method='ward', metric='euclidean', color_threshold=5200, ts_hspace=1)
.. figure:: https://github.com/mapattacker/dendrogram-ts/blob/master/images/dendrogram3.png?raw=true :width: 650px :align: center
Plot All Clusters
.. code:: python
from dendrogram_ts import allclust_draw
plt.style.use('seaborn-whitegrid')
plt.figure(figsize=(12,10))
allclust_draw(df, 'ward', 'euclidean', ts_hspace=5)
.. figure:: https://github.com/mapattacker/dendrogram-ts/blob/master/images/dendrogram2.png?raw=true :width: 650px :align: center