Marc Joliet marcec@gmx.de
A FAUST wrapper for Python.
FAUSTPy is a Python wrapper for the FAUST DSP language. It is implemented using the CFFI and hence creates the wrapper dynamically at run-time.
FAUSTPy has the following requirements:
FAUSTPy works with Python 2.7 and 3.2+.
You can install FAUSTPy via the provided setup.py script by running
sudo python setup.py install
or
python setup.py install --user
Although you may want to verify that everything works beforehand by running the test suite first:
python setup.py test
Using FAUSTPy is fairly simple, the main class is FAUSTPy.FAUST, which takes care of the dirty work. A typical example:
dsp = FAUSTPy.FAUST("faust_file.dsp", fs)
This will create a wrapper that initialises the FAUST DSP with the sampling rate
fs
and with FAUSTFLOAT
set to the default value of float
(the default
precision that is set by the FAUST compiler). Note that this
all of which happens in the background, thanks to the CFFI. Furthermore, this wrapper class
ui
attribute of the DSP, andmetadata
attribute.To better match the NumPy default of double
, you
can overload the faust_float
argument:
dsp = FAUSTPy.FAUST("faust_file.dsp", fs, "double")
To process an array, simply call:
# dsp.dsp is a PythonDSP object wrapped by the FAUST object
audio = numpy.zeros((dsp.dsp.num_in, count))
audio[:,0] = 1
out = dsp.compute(audio)
Here the array audio
is initialised to the number of inputs of the DSP and
count
samples; each channel consists of a Kronecker delta, so out
contains
the impulse response of the DSP. In general audio
is allowed to have more
channels (rows) than the DSP, in which case the first dsp.dsp.num_in
channels
are processed, but not less.
You can also pass in-line FAUST code as the first argument, which will be written to a temporary file and compiled by FAUST as usual. In Python 3:
dsp = FAUSTPy.FAUST(b"process = _:*(0.5);", fs)
Finally, below is a simple IPython example (using Python 2) that shows what a
FAUST object might look like. It is based on the DSP
dattorro_notch_cut_regalia.dsp
included in this repository.
In [1]: import FAUSTPy
In [2]: import numpy as np
In [3]: fs = 48000
In [4]: dattorro = FAUSTPy.FAUST("dattorro_notch_cut_regalia.dsp", fs, "double")
In [5]: dattorro.
dattorro.compute dattorro.dsp dattorro.FAUST_PATH
dattorro.compute2 dattorro.FAUST_FLAGS
In [5]: dattorro.dsp.
dattorro.dsp.compute dattorro.dsp.faustfloat dattorro.dsp.num_out
dattorro.dsp.compute2 dattorro.dsp.fs dattorro.dsp.ui
dattorro.dsp.dsp dattorro.dsp.metadata
dattorro.dsp.dtype dattorro.dsp.num_in
In [5]: dattorro.dsp.metadata
Out[5]:
{'author': 'Marc Joliet',
'copyright': '(c)Marc Joliet 2013',
'filter.lib/author': 'Julius O. Smith (jos at ccrma.stanford.edu)',
'filter.lib/copyright': 'Julius O. Smith III',
'filter.lib/license': 'STK-4.3',
'filter.lib/name': 'Faust Filter Library',
'filter.lib/reference': 'https://ccrma.stanford.edu/~jos/filters/',
'filter.lib/version': '1.29',
'license': 'MIT',
'math.lib/author': 'GRAME',
'math.lib/copyright': 'GRAME',
'math.lib/license': 'LGPL with exception',
'math.lib/name': 'Math Library',
'math.lib/version': '1.0',
'music.lib/author': 'GRAME',
'music.lib/copyright': 'GRAME',
'music.lib/license': 'LGPL with exception',
'music.lib/name': 'Music Library',
'music.lib/version': '1.0',
'name': 'Dattoro notch filter and resonator (Regalia)',
'version': '0.1'}
In [6]: dattorro.dsp.fs
Out[6]: 48000
In [7]: dattorro.dsp.num_in
Out[7]: 2
In [8]: dattorro.dsp.num_out
Out[8]: 2
In [9]: dattorro.dsp.ui.
dattorro.dsp.ui.label dattorro.dsp.ui.metadata dattorro.dsp.ui.p_Gain
dattorro.dsp.ui.layout dattorro.dsp.ui.p_Center_Freq dattorro.dsp.ui.p_Q
In [9]: dattorro.dsp.ui.label
Out[9]: 'dattorro_notch_cut_regalia'
In [10]: dattorro.dsp.ui.layout
Out[10]: 'vertical'
In [11]: dattorro.dsp.ui.p_Center_Freq
Out[11]: <FAUSTPy.python_ui.Param at 0x31617d0>
In [12]: dattorro.dsp.ui.p_Center_Freq.
dattorro.dsp.ui.p_Center_Freq.default dattorro.dsp.ui.p_Center_Freq.min
dattorro.dsp.ui.p_Center_Freq.label dattorro.dsp.ui.p_Center_Freq.step
dattorro.dsp.ui.p_Center_Freq.max dattorro.dsp.ui.p_Center_Freq.type
dattorro.dsp.ui.p_Center_Freq.metadata dattorro.dsp.ui.p_Center_Freq.zone
In [12]: dattorro.dsp.ui.p_Center_Freq.label
Out[12]: 'Center Freq.'
In [13]: dattorro.dsp.ui.p_Center_Freq.metadata
Out[13]: {'unit': 'Hz'}
In [14]: dattorro.dsp.ui.p_Center_Freq.type
Out[14]: 'HorizontalSlider'
In [15]: audio = np.zeros((dattorro.dsp.num_in,fs), dtype=dattorro.dsp.dtype)
In [16]: audio[:,0] = 1
In [17]: audio
Out[17]:
array([[ 1., 0., 0., ..., 0., 0., 0.],
[ 1., 0., 0., ..., 0., 0., 0.]])
In [18]: dattorro.compute(audio)
Out[18]:
array([[ 0.74657288, -0.30020767, 0.0227801 , ..., 0. ,
0. , 0. ],
[ 0.74657288, -0.30020767, 0.0227801 , ..., 0. ,
0. , 0. ]])
For more details, see the built-in documentation (aka pydoc FAUSTPy
) and - if
you are so inclined - the source code.
The __main__.py
of the FAUST package contains a small demo application which
plots some magnitude frequency responses of the example FAUST DSP. You can
execute it by executing
PYTHONPATH=. python FAUSTPy
in the source directory. This will display four plots: