marceloprates / prettymaps

A small set of Python functions to draw pretty maps from OpenStreetMap data. Based on osmnx, matplotlib and shapely libraries.
GNU Affero General Public License v3.0
11.16k stars 527 forks source link
cartography generative-art jupyter-notebook maps matplotlib openstreetmap python
# Install prettymaps using pip:
#!pip install prettymaps

prettymaps

A minimal Python library to draw customized maps from OpenStreetMap created using the osmnx, matplotlib, shapely and vsketch packages.

This work is licensed under a GNU Affero General Public License v3.0 (you can make commercial use, distribute and modify this project, but must disclose the source code with the license and copyright notice)

Note about crediting and NFTs:

Buy Me a Coffee at ko-fi.com

As seen on Hacker News:

prettymaps subreddit

Google Colaboratory Demo

Installation

To enable plotter mode:

pip install git+https://github.com/abey79/vsketch@1.0.0

Install locally:

Install prettymaps with:

pip install prettymaps

Install on Google Colaboratory:

Install prettymaps with:

!pip install -e "git+https://github.com/marceloprates/prettymaps#egg=prettymaps"

Then restart the runtime (Runtime -> Restart Runtime) before importing prettymaps

Tutorial

Plotting with prettymaps is very simple. Run:

prettymaps.plot(your_query)

your_query can be:

  1. An address (Example: "Porto Alegre"),
  2. Latitude / Longitude coordinates (Example: (-30.0324999, -51.2303767))
  3. A custom boundary in GeoDataFrame format
import prettymaps

plot = prettymaps.plot('Stad van de Zon, Heerhugowaard, Netherlands')

png

You can also choose from different "presets" (parameter combinations saved in JSON files)

See below an example using the "minimal" preset

import prettymaps

plot = prettymaps.plot(
    'Stad van de Zon, Heerhugowaard, Netherlands',
    preset = 'minimal'
)

png

Run

prettymaps.presets()

to list all available presets:

import prettymaps

prettymaps.presets()
preset params
0 abraca-redencao {'layers': {'perimeter': {}, 'streets': {'widt...
1 barcelona {'layers': {'perimeter': {'circle': False}, 's...
2 barcelona-plotter {'layers': {'streets': {'width': {'primary': 5...
3 cb-bf-f {'layers': {'streets': {'width': {'trunk': 6, ...
4 default {'layers': {'perimeter': {}, 'streets': {'widt...
5 heerhugowaard {'layers': {'perimeter': {}, 'streets': {'widt...
6 macao {'layers': {'perimeter': {}, 'streets': {'cust...
7 minimal {'layers': {'perimeter': {}, 'streets': {'widt...
8 plotter {'layers': {'perimeter': {}, 'streets': {'widt...
9 tijuca {'layers': {'perimeter': {}, 'streets': {'widt...

To examine a specific preset, run:

import prettymaps

prettymaps.preset('default')
Preset(params={'layers': {'perimeter': {}, 'streets': {'width': {'motorway': 5, 'trunk': 5, 'primary': 4.5, 'secondary': 4, 'tertiary': 3.5, 'cycleway': 3.5, 'residential': 3, 'service': 2, 'unclassified': 2, 'pedestrian': 2, 'footway': 1}}, 'building': {'tags': {'building': True, 'landuse': 'construction'}}, 'water': {'tags': {'natural': ['water', 'bay']}}, 'forest': {'tags': {'landuse': 'forest'}}, 'green': {'tags': {'landuse': ['grass', 'orchard'], 'natural': ['island', 'wood'], 'leisure': 'park'}}, 'beach': {'tags': {'natural': 'beach'}}, 'parking': {'tags': {'amenity': 'parking', 'highway': 'pedestrian', 'man_made': 'pier'}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'background': {'fc': '#F2F4CB', 'zorder': -1}, 'green': {'fc': '#8BB174', 'ec': '#2F3737', 'hatch_c': '#A7C497', 'hatch': 'ooo...', 'lw': 1, 'zorder': 1}, 'forest': {'fc': '#64B96A', 'ec': '#2F3737', 'lw': 1, 'zorder': 2}, 'water': {'fc': '#a8e1e6', 'ec': '#2F3737', 'hatch_c': '#9bc3d4', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'beach': {'fc': '#FCE19C', 'ec': '#2F3737', 'hatch_c': '#d4d196', 'hatch': 'ooo...', 'lw': 1, 'zorder': 3}, 'parking': {'fc': '#F2F4CB', 'ec': '#2F3737', 'lw': 1, 'zorder': 3}, 'streets': {'fc': '#2F3737', 'ec': '#475657', 'alpha': 1, 'lw': 0, 'zorder': 4}, 'building': {'palette': ['#433633', '#FF5E5B'], 'ec': '#2F3737', 'lw': 0.5, 'zorder': 5}}, 'circle': None, 'radius': 500})

Insted of using the default configuration you can customize several parameters. The most important are:

plot = prettymaps.plot(
    # Your query. Example: "Porto Alegre" or (-30.0324999, -51.2303767) (GPS coords)
    your_query,
    # Dict of OpenStreetMap Layers to plot. Example:
    # {'building': {'tags': {'building': True}}, 'water': {'tags': {'natural': 'water'}}}
    # Check the /presets folder for more examples
    layers,
    # Dict of style parameters for matplotlib. Example:
    # {'building': {'palette': ['#f00','#0f0','#00f'], 'edge_color': '#333'}}
    style,
    # Preset to load. Options include:
    # ['default', 'minimal', 'macao', 'tijuca']
    preset,
    # Save current parameters to a preset file.
    # Example: "my-preset" will save to "presets/my-preset.json"
    save_preset,
    # Whether to update loaded preset with additional provided parameters. Boolean
    update_preset,
    # Plot with circular boundary. Boolean
    circle,
    # Plot area radius. Float
    radius,
    # Dilate the boundary by this amount. Float
    dilate
)

plot is a python dataclass containing:

@dataclass
class Plot:
    # A dictionary of GeoDataFrames (one for each plot layer)
    geodataframes: Dict[str, gp.GeoDataFrame]
    # A matplotlib figure
    fig: matplotlib.figure.Figure
    # A matplotlib axis object
    ax: matplotlib.axes.Axes

Here's an example of running prettymaps.plot() with customized parameters:

import prettymaps

plot = prettymaps.plot(
    'Praça Ferreira do Amaral, Macau',
    circle = True,
    radius = 1100,
    layers = {
        "green": {
            "tags": {
                "landuse": "grass",
                "natural": ["island", "wood"],
                "leisure": "park"
            }
        },
        "forest": {
            "tags": {
                "landuse": "forest"
            }
        },
        "water": {
            "tags": {
                "natural": ["water", "bay"]
            }
        },
        "parking": {
            "tags": {
                "amenity": "parking",
                "highway": "pedestrian",
                "man_made": "pier"
            }
        },
        "streets": {
            "width": {
                "motorway": 5,
                "trunk": 5,
                "primary": 4.5,
                "secondary": 4,
                "tertiary": 3.5,
                "residential": 3,
            }
        },
        "building": {
            "tags": {"building": True},
        },
    },
    style = {
        "background": {
            "fc": "#F2F4CB",
            "ec": "#dadbc1",
            "hatch": "ooo...",
        },
        "perimeter": {
            "fc": "#F2F4CB",
            "ec": "#dadbc1",
            "lw": 0,
            "hatch": "ooo...",
        },
        "green": {
            "fc": "#D0F1BF",
            "ec": "#2F3737",
            "lw": 1,
        },
        "forest": {
            "fc": "#64B96A",
            "ec": "#2F3737",
            "lw": 1,
        },
        "water": {
            "fc": "#a1e3ff",
            "ec": "#2F3737",
            "hatch": "ooo...",
            "hatch_c": "#85c9e6",
            "lw": 1,
        },
        "parking": {
            "fc": "#F2F4CB",
            "ec": "#2F3737",
            "lw": 1,
        },
        "streets": {
            "fc": "#2F3737",
            "ec": "#475657",
            "alpha": 1,
            "lw": 0,
        },
        "building": {
            "palette": [
                "#FFC857",
                "#E9724C",
                "#C5283D"
            ],
            "ec": "#2F3737",
            "lw": 0.5,
        }
    }
)

png

In order to plot an entire region and not just a rectangular or circular area, set

radius = False
import prettymaps

plot = prettymaps.plot(
    'Bom Fim, Porto Alegre, Brasil', radius = False,
)

png

You can access layers's GeoDataFrames directly like this:

import prettymaps

# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Centro Histórico, Porto Alegre', show = False)
plot.geodataframes['building']
addr:housenumber addr:street amenity operator website geometry addr:postcode name office opening_hours ... contact:phone bus public_transport source:name government ways name:fr type building:part architect
element_type osmid
node 2407915698 820 Rua Washington Luiz NaN NaN NaN POINT (-51.23212 -30.0367) 90010-460 NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
way 126665330 387 Rua dos Andradas place_of_worship NaN NaN POLYGON ((-51.23518 -30.03275, -51.23512 -30.0... 90020-002 Igreja Nossa Senhora das Dores NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
126665331 1001 Rua dos Andradas NaN NaN http://www.ruadapraiashopping.com.br POLYGON ((-51.23167 -30.03066, -51.2316 -30.03... 90020-015 Rua da Praia Shopping NaN Mo-Fr 09:00-21:00; Sa 08:00-20:00 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
129176990 1020 Rua 7 de Setembro NaN NaN http://www.memorial.rs.gov.br POLYGON ((-51.23117 -30.02891, -51.2312 -30.02... 90010-191 Memorial do Rio Grande do Sul NaN Tu-Sa 10:00-18:00 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
129176991 NaN Praça da Alfândega NaN NaN http://www.margs.rs.gov.br POLYGON ((-51.23153 -30.02914, -51.23156 -30.0... 90010-150 Museu de Arte do Rio Grande do Sul NaN Tu-Su 10:00-19:00 ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
relation 6760281 NaN NaN NaN NaN NaN POLYGON ((-51.23238 -30.03337, -51.23223 -30.0... NaN NaN NaN NaN ... NaN NaN NaN NaN NaN [457506887, 457506886] NaN multipolygon NaN NaN
6760282 NaN NaN NaN NaN NaN POLYGON ((-51.23203 -30.0334, -51.23203 -30.03... NaN Atheneu Espírita Cruzeiro do Sul NaN NaN ... NaN NaN NaN NaN NaN [457506875, 457506889, 457506888] NaN multipolygon NaN NaN
6760283 NaN NaN NaN NaN NaN POLYGON ((-51.23284 -30.03367, -51.23288 -30.0... NaN Palacete Chaves NaN NaN ... NaN NaN NaN NaN NaN [457506897, 457506896] NaN multipolygon NaN Theodor Wiederspahn
6760284 NaN NaN NaN NaN NaN POLYGON ((-51.23499 -30.03412, -51.23498 -30.0... NaN NaN NaN NaN ... NaN NaN NaN NaN NaN [457506910, 457506913] NaN multipolygon NaN NaN
14393526 1044 Rua Siqueira Campos NaN NaN https://www.sefaz.rs.gov.br POLYGON ((-51.23125 -30.02813, -51.23128 -30.0... NaN Secretaria Estadual da Fazenda NaN NaN ... NaN NaN NaN NaN NaN [236213286, 1081974882] NaN multipolygon NaN NaN

2423 rows × 105 columns

Search a building by name and display it:

plot.geodataframes['building'][
        plot.geodataframes['building'].name == 'Catedral Metropolitana Nossa Senhora Mãe de Deus'
].geometry[0]
/home/marcelo/anaconda3/envs/prettymaps/lib/python3.11/site-packages/geopandas/geoseries.py:720: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`
  val = getattr(super(), mtd)(*args, **kwargs)

svg

Plot mosaic of building footprints

import prettymaps
import numpy as np
import osmnx as ox
from matplotlib import pyplot as plt

# Run prettymaps in show = False mode (we're only interested in obtaining the GeoDataFrames)
plot = prettymaps.plot('Porto Alegre', show = False)
# Get list of buildings from plot's geodataframes dict
buildings = plot.geodataframes['building']
# Project from lat / long
buildings = ox.project_gdf(buildings)
buildings = [b for b in buildings.geometry if b.area > 0]

# Draw Matplotlib mosaic of n x n building footprints
n = 6
fig,axes = plt.subplots(n,n, figsize = (7,6))
# Set background color
fig.patch.set_facecolor('#5cc0eb')
# Figure title
fig.suptitle(
    'Buildings of Porto Alegre',
    size = 25,
    color = '#fff'
)
# Draw each building footprint on a separate axis
for ax,building in zip(np.concatenate(axes),buildings):
    ax.plot(*building.exterior.xy, c = '#ffffff')
    ax.autoscale(); ax.axis('off'); ax.axis('equal')

png

Access plot.ax or plot.fig to add new elements to the matplotlib plot:

import prettymaps

plot = prettymaps.plot(
    (41.39491,2.17557),
    preset = 'barcelona',
)

# Change background color
plot.fig.patch.set_facecolor('#F2F4CB')
# Add title
_ = plot.ax.set_title(
    'Barcelona',
    font = 'serif',
    size = 50
)

png

Use plotter mode to export a pen plotter-compatible SVG (thanks to abey79's amazing vsketch library)

import prettymaps

plot = prettymaps.plot(
    (41.39491,2.17557),
    mode = 'plotter',
    layers = dict(perimeter = {}),
    preset = 'barcelona-plotter',
    scale_x = .6,
    scale_y = -.6,
)

png

Some other examples

import prettymaps

plot = prettymaps.plot(
    # City name
    'Barra da Tijuca',
    dilate = 0,
    figsize = (22,10),
    preset = 'tijuca',
)
import prettymaps

plot = prettymaps.plot(
    'Stad van de Zon, Heerhugowaard, Netherlands',
    preset = 'heerhugowaard',
)

png

Use prettymaps.create_preset() to create a preset:

import prettymaps

prettymaps.create_preset(
    "my-preset",
    layers = {
        "building": {
            "tags": {
                "building": True,
                "leisure": [
                    "track",
                    "pitch"
                ]
            }
        },
        "streets": {
            "width": {
                "trunk": 6,
                "primary": 6,
                "secondary": 5,
                "tertiary": 4,
                "residential": 3.5,
                "pedestrian": 3,
                "footway": 3,
                "path": 3
            }
        },
    },
    style = {
        "perimeter": {
            "fill": False,
            "lw": 0,
            "zorder": 0
        },
        "streets": {
            "fc": "#F1E6D0",
            "ec": "#2F3737",
            "lw": 1.5,
            "zorder": 3
        },
        "building": {
            "palette": [
                "#fff"
            ],
            "ec": "#2F3737",
            "lw": 1,
            "zorder": 4
        }
    }
)

prettymaps.preset('my-preset')
Preset(params={'layers': {'building': {'tags': {'building': True, 'leisure': ['track', 'pitch']}}, 'streets': {'width': {'trunk': 6, 'primary': 6, 'secondary': 5, 'tertiary': 4, 'residential': 3.5, 'pedestrian': 3, 'footway': 3, 'path': 3}}}, 'style': {'perimeter': {'fill': False, 'lw': 0, 'zorder': 0}, 'streets': {'fc': '#F1E6D0', 'ec': '#2F3737', 'lw': 1.5, 'zorder': 3}, 'building': {'palette': ['#fff'], 'ec': '#2F3737', 'lw': 1, 'zorder': 4}}, 'circle': None, 'radius': None, 'dilate': None})

Use prettymaps.delete_preset() to delete presets:

# Show presets before deletion
print('Before deletion:')
display(prettymaps.presets())
# Delete 'my-preset'
prettymaps.delete_preset('my-preset')
# Show presets after deletion
print('After deletion:')
display(prettymaps.presets())
Before deletion:
preset params
0 abraca-redencao {'layers': {'perimeter': {}, 'streets': {'widt...
1 barcelona {'layers': {'perimeter': {'circle': False}, 's...
2 barcelona-plotter {'layers': {'streets': {'width': {'primary': 5...
3 cb-bf-f {'layers': {'streets': {'width': {'trunk': 6, ...
4 default {'layers': {'perimeter': {}, 'streets': {'widt...
5 heerhugowaard {'layers': {'perimeter': {}, 'streets': {'widt...
6 macao {'layers': {'perimeter': {}, 'streets': {'cust...
7 minimal {'layers': {'perimeter': {}, 'streets': {'widt...
8 my-preset {'layers': {'building': {'tags': {'building': ...
9 plotter {'layers': {'perimeter': {}, 'streets': {'widt...
10 tijuca {'layers': {'perimeter': {}, 'streets': {'widt...
After deletion:
preset params
0 abraca-redencao {'layers': {'perimeter': {}, 'streets': {'widt...
1 barcelona {'layers': {'perimeter': {'circle': False}, 's...
2 barcelona-plotter {'layers': {'streets': {'width': {'primary': 5...
3 cb-bf-f {'layers': {'streets': {'width': {'trunk': 6, ...
4 default {'layers': {'perimeter': {}, 'streets': {'widt...
5 heerhugowaard {'layers': {'perimeter': {}, 'streets': {'widt...
6 macao {'layers': {'perimeter': {}, 'streets': {'cust...
7 minimal {'layers': {'perimeter': {}, 'streets': {'widt...
8 plotter {'layers': {'perimeter': {}, 'streets': {'widt...
9 tijuca {'layers': {'perimeter': {}, 'streets': {'widt...

Use prettymaps.multiplot and prettymaps.Subplot to draw multiple regions on the same canvas

import prettymaps

# Draw several regions on the same canvas
plot = prettymaps.multiplot(
    prettymaps.Subplot(
        'Cidade Baixa, Porto Alegre',
        style={'building': {'palette': ['#49392C', '#E1F2FE', '#98D2EB']}}
    ),
    prettymaps.Subplot(
        'Bom Fim, Porto Alegre',
        style={'building': {'palette': ['#BA2D0B', '#D5F2E3', '#73BA9B', '#F79D5C']}}
    ),
    prettymaps.Subplot(
        'Farroupilha, Porto Alegre',
        style={'building': {'palette': ['#EEE4E1', '#E7D8C9', '#E6BEAE']}}
    ),
    # Load a global preset
    preset='cb-bf-f',
    # Figure size
    figsize=(12, 12)
)

png

<Figure size 3600x3600 with 0 Axes>

<Figure size 3600x3600 with 0 Axes>

<Figure size 3600x3600 with 0 Axes>