marian42 / mesh_to_sdf

Calculate signed distance fields for arbitrary meshes
https://pypi.org/project/mesh-to-sdf/
MIT License
991 stars 107 forks source link

Calculate signed distance fields for arbitrary meshes

This project calculates approximate SDFs for triangle meshes. It works for non-watertight meshes (meshes with holes), self-intersecting meshes, meshes with non-manifold geometry and meshes with inconsistently oriented faces.

Install

pip3 install mesh-to-sdf

If you're using Windows or Mac, you need to work around a bug in pyrender. Check the FAQs below.

Examples

Voxelize a mesh

The mesh_to_voxels function creates an N ✕ N ✕ N array of SDF values. In this example, a mesh is reconstructed using Marching Cubes and then rendered.

from mesh_to_sdf import mesh_to_voxels

import trimesh
import skimage

mesh = trimesh.load('chair.obj')

voxels = mesh_to_voxels(mesh, 64, pad=True)

vertices, faces, normals, _ = skimage.measure.marching_cubes(voxels, level=0)
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_normals=normals)
mesh.show()

Example of a mesh and a reconstructed SDF voxel volume

Sample SDF points non-uniformly near the surface

This example creates 250,000 points, where most of the points are close to the surface and some are sampled uniformly. This is the method that is proposed and used in the DeepSDF paper. In this example, the resulting points are rendered in red where the SDF is positive and in blue where it is negative.

from mesh_to_sdf import sample_sdf_near_surface

import trimesh
import pyrender
import numpy as np

mesh = trimesh.load('chair.obj')

points, sdf = sample_sdf_near_surface(mesh, number_of_points=250000)

colors = np.zeros(points.shape)
colors[sdf < 0, 2] = 1
colors[sdf > 0, 0] = 1
cloud = pyrender.Mesh.from_points(points, colors=colors)
scene = pyrender.Scene()
scene.add(cloud)
viewer = pyrender.Viewer(scene, use_raymond_lighting=True, point_size=2)

Example of a mesh and a point cloud of non-uniformly sampled SDF points

How it works

The general pipeline for calculating SDF in this project is as follows:

  1. Create 100 virtual laser scans of the shape from multiple angles. These each consist of a normal buffer and a depth buffer.
  2. Use the inverse MVP matrix and depth buffer of each scan to calculate a world-space surface point cloud
  3. Determine the value of the SDF for each query point by finding the closest surface point using a kd-tree
  4. Determine the sign of the SDF using either the normal of the closest surface point or by checking it against the depth buffers of the scans. When using normals, the sign is determined with a dot product. When using the depth buffer method, the point is projected in the frame of each render. By comparing the depth element of the depth buffer and depth of the query point, we determine if the query point is seen by the camera. The sign of the point is positive if it is seen by any of the cameras.

This repository contains an implementation of the procedure proposed in the DeepSDF paper, as well as some alternatives.

FAQ

Q: I'm getting this error: module 'pyglet.gl' has no attribute 'xlib'

This is due to a bug in pyrender. Possible workarounds:

Q: I want to run this on a computer without a screen (ie. via SSH)

Add this to your script before importing mesh_to_sdf:

import os
os.environ['PYOPENGL_PLATFORM'] = 'egl'

__Q: There are cone shaped artifacts in the SDF volume when using sign_method='normal'__

This is a known issue. To mitigate this, the signs are determined by checking a number of surface points and using a majority vote. This problem can't be avoided entirely and increasing the number of points (normal_sample_count) even further doesn't seem to help. In some cases, this problem appears when the mesh contains tiny triangles that face in a different direction than their surrounding area. Smoothing the mesh doesn't seem to help.

The sign_method='depth' approach doesn't have this problem. But it doesn't work with meshes that have holes.

__Q: There are ray shaped artifacts in the SDF volume when using sign_method='depth'__

This happens when the mesh has holes and a camera can see "inside" the mesh. Use sign_method='normal' instead.

Q: This doesn't work!

This repository contains two approximate methods and in some cases they don't provide usable results. When one of the methods fails, try the other one. This can be automated by using the built-in ways to check if the result is plausible. For the voxelizing methods, use check_result=True. This checks if the difference in SDF is smaller than the difference in distance between any two points. In sample_sdf_near_surface, you can add a volume check (min_size). If these checks fail, a BadMeshException is thrown.

This method can process about 60% of the meshes in the ShapeNet dataset.

Documentation

mesh_to_sdf

Calculate signed distance values for an array of given query points

mesh_to_sdf.mesh_to_sdf(mesh, query_points, surface_point_method='scan', sign_method='normal', bounding_radius=None, scan_count=100, scan_resolution=400, sample_point_count=10000000, normal_sample_count=11)

Parameters

Returns

mesh_to_voxels

Calculate an N ✕ N ✕ N voxel volume of signed distance values for a given mesh. The mesh is first transformed to fit inside a cube ranging from -1 to 1.

mesh_to_sdf.mesh_to_voxels(mesh, voxel_resolution=64, surface_point_method='scan', sign_method='normal', scan_count=100, scan_resolution=400, sample_point_count=10000000, normal_sample_count=11, pad=False, check_result=False, return_gradients=False)

Parameters

Returns

Returns additionally if return_gradients is True:

sample_sdf_near_surface

Sample some points uniformly and some points near the shape surface and calculate SDFs for these points. This follows the procedure proposed in the DeepSDF paper. The mesh is first transformed to fit inside the unit sphere.

mesh_to_sdf.sample_sdf_near_surface(mesh, number_of_points = 500000, surface_point_method='scan', sign_method='normal', scan_count=100, scan_resolution=400, sample_point_count=10000000, normal_sample_count=11, min_size=0, return_gradients=False)

Parameters

Returns

Returns additionally if return_gradients is True:

get_surface_point_cloud

Returns an intermediate data structure containing a surface point cloud, scans and a kd-tree of the point cloud. This can be used if SDFs will be calculated multiple times for the same mesh or for debugging.

mesh_to_sdf.get_surface_point_cloud(mesh, surface_point_method='scan', bounding_radius=1, scan_count=100, scan_resolution=400, sample_point_count=10000000, calculate_normals=True)

Parameters

Returns

Common parameters