mattansb / Practical-Applications-in-R-for-Psychologists

Lesson files for Practical Applications in R for Psychologists.
Other
125 stars 17 forks source link
bgu-university easystats psychologists regression rstats statistics teaching-materials tidyverse

Practical Applications in R for Psychologists


Last updated 2023-09-03.

This Github repo contains all lesson files for Practical Applications in R for Psychologists. The goal is to impart students with the basic tools to process data, describe data (w/ summary statistics and plots), and the foundations of building, evaluating and comparing statistical models in R, focusing on linear regression modeling (using both frequentist and Bayesian approaches).

These topics were taught in the graduate-level course Advanced Research Methods for Psychologists (Psych Dep., Ben-Gurion University of the Negev), laying the foundation for the following topic-focused courses:

Notes:

Setup

You will need:

  1. A fresh installation of R (preferably version 4.1.1 or above).
  2. RStudio IDE (optional, but recommended).
  3. The following packages, listed by lesson:
Lesson Packages
01 intro
02 data wrangling haven, tidyverse, readxl, dplyr, datawizard, summarytools, parameters, psych, finalfit, Hmisc, mice
03 plotting dplyr, ggplot2, ragg, tidyr
04 hypothesis testing and power effectsize, correlation, BayesFactor, dplyr, pwr, ggplot2
05 regression 101 effectsize, parameters, performance, ggeffects, psychTools
06 categorical predictors and model comparison dplyr, parameters, emmeans, ggeffects, bayestestR, performance
07 moderation and curvilinear dplyr, datawizard, parameters, performance, bayestestR, emmeans, ggeffects, ggplot2, modelbased
08 generalized linear models dplyr, parameters, performance, ggeffects, emmeans, marginaleffects
09 assumption checks and violations ggeffects, performance, see, bayesplot, qqplotr, datawizard, permuco, parameters, insight
10 ANOVA afex, emmeans, effectsize, ggeffects, tidyr
11 mediation mediation, tidySEM

(Bold denotes the first lesson in which the package was used.)

You can install all the packages used by running:

# in alphabetical order:

pkgs <- c(
  "afex", "BayesFactor", "bayesplot", "bayestestR", "correlation",
  "datawizard", "dplyr", "effectsize", "emmeans", "finalfit", "ggeffects",
  "ggplot2", "haven", "Hmisc", "insight", "marginaleffects", "mediation",
  "mice", "modelbased", "parameters", "performance", "permuco",
  "psych", "psychTools", "pwr", "qqplotr", "ragg", "readxl", "see",
  "summarytools", "tidyr", "tidySEM", "tidyverse"
)

install.packages(pkgs, repos = c("https://easystats.r-universe.dev", getOption("repos")))
Package Versions Run on Windows 11 x64 (build 22621), with R version 4.3.1. The packages used here: - `afex` 1.3-0 (*CRAN*) - `BayesFactor` 0.9.12-4.4 (*CRAN*) - `bayesplot` 1.10.0 (*CRAN*) - `bayestestR` 0.13.1.2 (*Local version*) - `correlation` 0.8.4 (*CRAN*) - `datawizard` 0.8.0.7 (*Local version*) - `dplyr` 1.1.2 (*CRAN*) - `effectsize` 0.8.5 (*Local version*) - `emmeans` 1.8.7 (*CRAN*) - `finalfit` 1.0.6 (*CRAN*) - `ggeffects` 1.3.0.5 (*Github: strengejacke/ggeffects*) - `ggplot2` 3.4.3 (*CRAN*) - `haven` 2.5.3 (*CRAN*) - `Hmisc` 5.1-0 (*CRAN*) - `insight` 0.19.3.3 (*Github: easystats/insight*) - `marginaleffects` 0.13.0 (*CRAN*) - `mediation` 4.5.0 (*CRAN*) - `mice` 3.16.0 (*CRAN*) - `modelbased` 0.8.6 (*CRAN*) - `parameters` 0.21.1 (*CRAN*) - `performance` 0.10.4 (*CRAN*) - `permuco` 1.1.2 (*CRAN*) - `psych` 2.3.6 (*CRAN*) - `psychTools` 2.3.6 (*CRAN*) - `pwr` 1.3-0 (*CRAN*) - `qqplotr` 0.0.6 (*CRAN*) - `ragg` 1.2.5 (*CRAN*) - `readxl` 1.4.3 (*CRAN*) - `see` 0.8.0.2 (*Local version*) - `summarytools` 1.0.1 (*CRAN*) - `tidyr` 1.3.0 (*CRAN*) - `tidySEM` 0.2.4 (*CRAN*) - `tidyverse` 2.0.0 (*CRAN*)