We are working on producing a set of synthetic urban traffic networks and corresponding data for benchmarking and evaluation purposes.
For example usage, please see:
Convex optimization for traffic assignment
Bayesian inference for traffic assignment
Compressive sensing for traffic assignment
Also, see our contributors!
We use Python 2.7.
scipy
ipython
matplotlib
delegate
Coming soon!
Dependencies for grid networks
networkx
Usage
python static_matrix.py --prefix '' --num_rows <# ROWS OF STREETS> \
--num_cols <# COLUMNS OF STREETS> \
--num_routes_per_od <# ROUTES BETWEEN ODS> \
--num_nonzero_routes_per_o <# ROUTES WITH NONZERO FLOW PER OD>
Example
python static_matrix.py --prefix '' --num_rows 2 --num_cols 2 \
--num_routes_per_od 3 --num_nonzero_routes_per_o 3
Example grid network
Dependencies for waypoint
pyshp
Load map via Shapefile
run -i find.py
Find new roads of interest
roads = find('210',sf,shapes,verbose=True)
Generate waypoints
run -i Waypoint.py
Example waypoints
Dependencies for grid networks in UE
cvxopt
networkx
Running
python test_ue_solver.py
python test_path_solver.py
python test_missing.py
python test_draw.py
Coordinates for bounding box in L.A.: [-118.328299, 33.984601, -117.68132, 34.255881]
Add flow in equilibrium to recreate congestion