mengxue-rs / a-spn

the official implementation of paper Attention-Based Second-Order Pooling Network for Hyperspectral Image Classification (A-SPN).
7 stars 2 forks source link
attention-mechanism classification deep-learning hyperspectral-image second-order-pooling

% Same to codes of https://github.com/ZhaohuiXue/A-SPN-release Whileas it is a slim version (only with indian pines data convenient for downloading) % A-SPN: Attention-Based Second-Order Pooling Network for Hyperspectral Image Classification DEMO. % URL : https://ieeexplore.ieee.org/document/9325094
% Version: 1.0 % Date : May 2021 % % This demo shows the A-SPN model for hyperspectral image classification. % % main.py ....... A main script executing experiments upon IP, PU, and HU data sets. % data.py ....... A script implementing various data manipulation functions. % function.py ....... A script implementing the training function, the test function, and etc. % model.py ....... A script implementing the SPN and A-SPN model. % secondpooling.py ....... A script implementing the Second Order Pooling Operator, namely, SOP. % spatialattention.py ....... A script implementing the Spatial Attention further improving SOP, namely, A-SOP. % % /Dataset ............... The folder including the IP, PU, and HU data sets. % /temp_vars ............... The folder storing temporary PCA preprocessing results. % /logs ............... The folder containing a script guiding to TensorBoard usage. % % -------------------------------------- % Note: Required core python libraries are covered % -------------------------------------- % 1. python 3.6.5 % 2. tensorflow-gpu 1.14.0 % 3. tensorboard 1.14.0 % 4. Keras 2.2.5 % 5. opencv-python 4.4.0.46 % 6. h5py 2.10.0 % 7. matplotlib 3.3.0 % 8. numpy 1.19.4 % 9. scipy 1.5.4 % -------------------------------------- % Cite: % -------------------------------------- % % [1] Z. Xue, M. Zhang, Y. Liu and P. Du, "Attention-Based Second-Order Pooling Network for Hyperspectral Image Classification," in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3048128. % % -------------------------------------- % Copyright & Disclaimer % -------------------------------------- % % The programs contained in this package are granted free of charge for % research and education purposes only. % % Copyright (c) 2021 by Zhaohui Xue & Mengxue Zhang % zhaohui.xue@hhu.edu.cn & mengxue_zhang@hhu.edu.cn % https://sites.google.com/site/zhaohuixuers/publications