This is an implementation of the paper "Robust 6D Object Pose Estimation by Learning RGB-D Features" (arXiv). Given an RGB-D image, our model predicts the 6D pose of each object in the scene.
Compile the ransac voting layer:
cd path_to_object-posenet/lib/ransac_voting
python setup.py install --user
Compile the gpu version of knn:
cd path_to_object-posenet/lib/knn
python setup.py install --user
Download the preprocessed LineMOD:
unzip Linemod_preprocessed.zip
rm Linemod_preprocessed.zip
cd path_to_object-posenet/datasets/linemod
ln -s path_to_Linemod_preprocessed Linemod_preprocessed
Download the YCB-Video Dataset:
unzip YCB_Video_Dataset.zip
rm YCB_Video_Dataset.zip
cd path_to_object-posenet/datasets/ycb
ln -s path_to_YCB_Video_Dataset YCB_Video_Dataset
# train a new model on LineMOD
python train.py --dataset 'linemod'
# train a new model on YCB-Video
python train.py --dataset 'ycb'
# resume training
python train.py --dataset 'ycb' --resume_posenet 'results/ycb/model_name.pth'
Download the trained model:
unzip trained_models.zip
mv trained_models path_to_object-posenet/
rm trained_models.zip
If evaluate on LineMOD, please run:
python eval_linemod.py
If evaluate on YCB-Video, please download the YCB_Video_toolbox first:
cd path_to_object-posenet
git clone https://github.com/yuxng/YCB_Video_toolbox.git
cd YCB_Video_toolbox
unzip results_PoseCNN_RSS2018.zip
cd ..
cp assets/*.m YCB_Video_toolbox/
Run:
python eval_ycb.py
Then, download the results of DenseFusion for comparison:
unzip densefusion_results.zip
mv densefusion_results/* path_to_object-posenet/YCB_Video_toolbox/
rmdir densefusion_results
rm densefusion_results.zip
We use MATLAB to get both quantative and qualitative results:
# matlab -softwareopengl
# compute accuracy
run evaluate_poses_keyframe.m
# plot accuracy curve
run plot_accuracy_keyframe.m
# visualize results
# mkdir path_to_object-posenet/YCB_Video_toolbox/pose_visual
run show_pose_results.m
If you find our work helpful, please consider citing:
@InProceedings{tian2020robust,
title = {Robust 6D Object Pose Estimation by Learning RGB-D Features},
author = {Tian, Meng and Pan, Liang and Ang Jr, Marcelo H and Lee, Gim Hee},
booktitle = {International Conference on Robotics and Automation (ICRA)},
year = {2020}
}
Our code is largely adapted from DenseFusion. The ransac voting layer is modified from PVNet.