Apply boolean Polygon clipping operations (intersection
, union
, difference
, xor
) to your Polygons & MultiPolygons.
const polygonClipping = require('polygon-clipping')
const poly1 = [[[0,0],[2,0],[0,2],[0,0]]]
const poly2 = [[[-1,0],[1,0],[0,1],[-1,0]]]
polygonClipping.union (poly1, poly2 /* , poly3, ... */)
polygonClipping.intersection(poly1, poly2 /* , poly3, ... */)
polygonClipping.xor (poly1, poly2 /* , poly3, ... */)
polygonClipping.difference (poly1, poly2 /* , poly3, ... */)
/* All functions take one or more [multi]polygon(s) as input */
polygonClipping.union (<geom>, ...<geoms>)
polygonClipping.intersection(<geom>, ...<geoms>)
polygonClipping.xor (<geom>, ...<geoms>)
/* The clipGeoms will be subtracted from the subjectGeom */
polygonClipping.difference(<subjectGeom>, ...<clipGeoms>)
Each positional argument (<geom>
) may be either a Polygon or a MultiPolygon. The GeoJSON spec is followed, with the following notes/modifications:
For non-empty results, output will always be a MultiPolygon containing one or more non-overlapping, non-edge-sharing Polygons. The GeoJSON spec is followed, with the following notes/modifications:
In the event that the result of the operation is the empty set, output will be a MultiPolygon with no Polygons: []
.
Run: npm test
The tests are broken up into unit tests and end-to-end tests. The end-to-end tests are organized as GeoJSON files, to make them easy to visualize thanks to GitHub's helpful rendering of GeoJSON files. Browse those tests here.
The Martinez-Rueda-Feito polygon clipping algorithm is used to compute the result in O((n+k)*log(n))
time, where n
is the total number of edges in all polygons involved and k
is the number of intersections between edges.
Global settings are set via environment variables.
This project adheres to Semantic Versioning.
The full changelog is available at CHANGELOG.md.
Please contact Mike Fogel if you or your company is interested in sponsoring work on specific bug fixes or feature requests.