mgonzs13 / llama_ros

llama.cpp (GGUF LLMs) and llava.cpp (GGUF VLMs) for ROS 2
MIT License
153 stars 26 forks source link
cpp embeddings ggml gguf gpt langchain llama llamacpp llava llavacpp llm rerank reranking ros2 vlm

llama_ros

This repository provides a set of ROS 2 packages to integrate llama.cpp into ROS 2. Using the llama_ros packages, you can easily incorporate the powerful optimization capabilities of llama.cpp into your ROS 2 projects by running GGUF-based LLMs and VLMs. You can also use features from llama.cpp such as GBNF grammars and modify LoRAs in real-time.

Table of Contents

  1. Related Projects
  2. Installation
  3. Docker
  4. Usage
  5. Demos

Related Projects

Installation

To run llama_ros with CUDA, first, you must install the CUDA Toolkit. Then, you can compile llama_ros with --cmake-args -DGGML_CUDA=ON to enable CUDA support.

$ cd ~/ros2_ws/src
$ git clone https://github.com/mgonzs13/llama_ros.git
$ pip3 install -r llama_ros/requirements.txt
$ cd ~/ros2_ws
$ rosdep install --from-paths src --ignore-src -r -y
$ colcon build --cmake-args -DGGML_CUDA=ON # add this for CUDA

Docker

Build the llama_ros docker. Additionally, you can choose to build llama_ros with CUDA (USE_CUDA) and choose the CUDA version (CUDA_VERSION). Remember that you have to use DOCKER_BUILDKIT=0 to compile llama_ros with CUDA when building the image.

$ DOCKER_BUILDKIT=0 docker build -t llama_ros --build-arg USE_CUDA=1 --build-arg CUDA_VERSION=12-6 .

Run the docker container. If you want to use CUDA, you have to install the NVIDIA Container Tollkit and add --gpus all.

$ docker run -it --rm --gpus all llama_ros

Usage

llama_cli

Commands are included in llama_ros to speed up the test of GGUF-based LLMs within the ROS 2 ecosystem. This way, the following commands are integrating into the ROS 2 commands:

launch

Using this command launch a LLM from a YAML file. The configuration of the YAML is used to launch the LLM in the same way as using a regular launch file. Here is an example of how to use it:

$ ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/StableLM-Zephyr.yaml

prompt

Using this command send a prompt to a launched LLM. The command uses a string, which is the prompt and has the following arguments:

Here is an example of how to use it:

$ ros2 llama prompt "Do you know ROS 2?" -t 0.0

Launch Files

First of all, you need to create a launch file to use llama_ros or llava_ros. This launch file will contain the main parameters to download the model from HuggingFace and configure it. Take a look at the following examples and the predefined launch files.

llama_ros (Python Launch)

Click to expand ```python from launch import LaunchDescription from llama_bringup.utils import create_llama_launch def generate_launch_description(): return LaunchDescription([ create_llama_launch( n_ctx=2048, # context of the LLM in tokens n_batch=8, # batch size in tokens n_gpu_layers=0, # layers to load in GPU n_threads=1, # threads n_predict=2048, # max tokens, -1 == inf model_repo="TheBloke/Marcoroni-7B-v3-GGUF", # Hugging Face repo model_filename="marcoroni-7b-v3.Q4_K_M.gguf", # model file in repo system_prompt_type="Alpaca" # system prompt type ) ]) ``` ```shell $ ros2 launch llama_bringup marcoroni.launch.py ```

llama_ros (YAML Config)

Click to expand ```yaml n_ctx: 2048 # context of the LLM in tokens n_batch: 8 # batch size in tokens n_gpu_layers: 0 # layers to load in GPU n_threads: 1 # threads n_predict: 2048 # max tokens, -1 == inf model_repo: "cstr/Spaetzle-v60-7b-GGUF" # Hugging Face repo model_filename: "Spaetzle-v60-7b-q4-k-m.gguf" # model file in repo system_prompt_type: "Alpaca" # system prompt type ``` ```python import os from launch import LaunchDescription from llama_bringup.utils import create_llama_launch_from_yaml from ament_index_python.packages import get_package_share_directory def generate_launch_description(): return LaunchDescription([ create_llama_launch_from_yaml(os.path.join( get_package_share_directory("llama_bringup"), "models", "Spaetzle.yaml")) ]) ``` ```shell $ ros2 launch llama_bringup spaetzle.launch.py ```

llama_ros (YAML Config + model shards)

Click to expand ```yaml n_ctx: 2048 # context of the LLM in tokens n_batch: 8 # batch size in tokens n_gpu_layers: 0 # layers to load in GPU n_threads: 1 # threads n_predict: 2048 # max tokens, -1 == inf model_repo: "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF" # Hugging Face repo model_filename: "qwen2.5-coder-7b-instruct-q4_k_m-00001-of-00002.gguf" # model shard file in repo system_prompt_type: "ChatML" # system prompt type ``` ```shell $ ros2 llama launch Qwen2.yaml ```

llava_ros (Python Launch)

Click to expand ```python from launch import LaunchDescription from llama_bringup.utils import create_llama_launch def generate_launch_description(): return LaunchDescription([ create_llama_launch( use_llava=True, # enable llava n_ctx=8192, # context of the LLM in tokens, use a huge context size to load images n_batch=512, # batch size in tokens n_gpu_layers=33, # layers to load in GPU n_threads=1, # threads n_predict=8192, # max tokens, -1 == inf model_repo="cjpais/llava-1.6-mistral-7b-gguf", # Hugging Face repo model_filename="llava-v1.6-mistral-7b.Q4_K_M.gguf", # model file in repo mmproj_repo="cjpais/llava-1.6-mistral-7b-gguf", # Hugging Face repo mmproj_filename="mmproj-model-f16.gguf", # mmproj file in repo system_prompt_type="Mistral" # system prompt type ) ]) ``` ```shell $ ros2 launch llama_bringup llava.launch.py ```

llava_ros (YAML Config)

Click to expand ```yaml use_llava: True # enable llava n_ctx: 8192 # context of the LLM in tokens use a huge context size to load images n_batch: 512 # batch size in tokens n_gpu_layers: 33 # layers to load in GPU n_threads: 1 # threads n_predict: 8192 # max tokens -1 : : inf model_repo: "cjpais/llava-1.6-mistral-7b-gguf" # Hugging Face repo model_filename: "llava-v1.6-mistral-7b.Q4_K_M.gguf" # model file in repo mmproj_repo: "cjpais/llava-1.6-mistral-7b-gguf" # Hugging Face repo mmproj_filename: "mmproj-model-f16.gguf" # mmproj file in repo system_prompt_type: "mistral" # system prompt type ``` ```python def generate_launch_description(): return LaunchDescription([ create_llama_launch_from_yaml(os.path.join( get_package_share_directory("llama_bringup"), "models", "llava-1.6-mistral-7b-gguf.yaml")) ]) ``` ```shell $ ros2 launch llama_bringup llava.launch.py ```

LoRA Adapters

You can use LoRA adapters when launching LLMs. Using llama.cpp features, you can load multiple adapters choosing the scale to apply for each adapter. Here you have an example of using LoRA adapters with Phi-3. You can lis the LoRAs using the /llama/list_loras service and modify their scales values by using the /llama/update_loras service. A scale value of 0.0 means not using that LoRA.

Click to expand ```yaml n_ctx: 2048 n_batch: 8 n_gpu_layers: 0 n_threads: 1 n_predict: 2048 model_repo: "bartowski/Phi-3.5-mini-instruct-GGUF" model_filename: "Phi-3.5-mini-instruct-Q4_K_M.gguf" lora_adapters: - repo: "zhhan/adapter-Phi-3-mini-4k-instruct_code_writing" filename: "Phi-3-mini-4k-instruct-adaptor-f16-code_writer.gguf" scale: 0.5 - repo: "zhhan/adapter-Phi-3-mini-4k-instruct_summarization" filename: "Phi-3-mini-4k-instruct-adaptor-f16-summarization.gguf" scale: 0.5 system_prompt_type: "Phi-3" ```

ROS 2 Clients

Both llama_ros and llava_ros provide ROS 2 interfaces to access the main functionalities of the models. Here you have some examples of how to use them inside ROS 2 nodes. Moreover, take a look to the llama_demo_node.py and llava_demo_node.py demos.

Tokenize

Click to expand ```python from rclpy.node import Node from llama_msgs.srv import Tokenize class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.srv_client = self.create_client(Tokenize, "/llama/tokenize") # create the request req = Tokenize.Request() req.text = "Example text" # call the tokenize service self.srv_client.wait_for_service() tokens = self.srv_client.call(req).tokens ```

Detokenize

Click to expand ```python from rclpy.node import Node from llama_msgs.srv import Detokenize class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.srv_client = self.create_client(Detokenize, "/llama/detokenize") # create the request req = Detokenize.Request() req.tokens = [123, 123] # call the tokenize service self.srv_client.wait_for_service() text = self.srv_client.call(req).text ```

Embeddings

Click to expand _Remember to launch llama_ros with embedding set to true to be able of generating embeddings with your LLM._ ```python from rclpy.node import Node from llama_msgs.srv import Embeddings class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.srv_client = self.create_client(Embeddings, "/llama/generate_embeddings") # create the request req = Embeddings.Request() req.prompt = "Example text" req.normalize = True # call the embedding service self.srv_client.wait_for_service() embeddings = self.srv_client.call(req).embeddings ```

Generate Response

Click to expand ```python import rclpy from rclpy.node import Node from rclpy.action import ActionClient from llama_msgs.action import GenerateResponse class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create the client self.action_client = ActionClient( self, GenerateResponse, "/llama/generate_response") # create the goal and set the sampling config goal = GenerateResponse.Goal() goal.prompt = self.prompt goal.sampling_config.temp = 0.2 # wait for the server and send the goal self.action_client.wait_for_server() send_goal_future = self.action_client.send_goal_async( goal) # wait for the server rclpy.spin_until_future_complete(self, send_goal_future) get_result_future = send_goal_future.result().get_result_async() # wait again and take the result rclpy.spin_until_future_complete(self, get_result_future) result: GenerateResponse.Result = get_result_future.result().result ```

Generate Response (llava)

Click to expand ```python import cv2 from cv_bridge import CvBridge import rclpy from rclpy.node import Node from rclpy.action import ActionClient from llama_msgs.action import GenerateResponse class ExampleNode(Node): def __init__(self) -> None: super().__init__("example_node") # create a cv bridge for the image self.cv_bridge = CvBridge() # create the client self.action_client = ActionClient( self, GenerateResponse, "/llama/generate_response") # create the goal and set the sampling config goal = GenerateResponse.Goal() goal.prompt = self.prompt goal.sampling_config.temp = 0.2 # add your image to the goal image = cv2.imread("/path/to/your/image", cv2.IMREAD_COLOR) goal.image = self.cv_bridge.cv2_to_imgmsg(image) # wait for the server and send the goal self.action_client.wait_for_server() send_goal_future = self.action_client.send_goal_async( goal) # wait for the server rclpy.spin_until_future_complete(self, send_goal_future) get_result_future = send_goal_future.result().get_result_async() # wait again and take the result rclpy.spin_until_future_complete(self, get_result_future) result: GenerateResponse.Result = get_result_future.result().result ```

LangChain

There is a llama_ros integration for LangChain. Thus, prompt engineering techniques could be applied. Here you have an example to use it.

llama_ros (Chain)

Click to expand ```python import rclpy from llama_ros.langchain import LlamaROS from langchain.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser rclpy.init() # create the llama_ros llm for langchain llm = LlamaROS() # create a prompt template prompt_template = "tell me a joke about {topic}" prompt = PromptTemplate( input_variables=["topic"], template=prompt_template ) # create a chain with the llm and the prompt template chain = prompt | llm | StrOutputParser() # run the chain text = chain.invoke({"topic": "bears"}) print(text) rclpy.shutdown() ```

llama_ros (Stream)

Click to expand ```python import rclpy from llama_ros.langchain import LlamaROS from langchain.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser rclpy.init() # create the llama_ros llm for langchain llm = LlamaROS() # create a prompt template prompt_template = "tell me a joke about {topic}" prompt = PromptTemplate( input_variables=["topic"], template=prompt_template ) # create a chain with the llm and the prompt template chain = prompt | llm | StrOutputParser() # run the chain for c in chain.stream({"topic": "bears"}): print(c, flush=True, end="") rclpy.shutdown() ```

llava_ros

Click to expand ```python import rclpy from llama_ros.langchain import LlamaROS rclpy.init() # create the llama_ros llm for langchain llm = LlamaROS() # bind the url_image llm = llm.bind(image_url=image_url).stream("Describe the image") image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" # run the llm for c in llm: print(c, flush=True, end="") rclpy.shutdown() ```

llama_ros_embeddings (RAG)

Click to expand ```python import rclpy from langchain_chroma import Chroma from llama_ros.langchain import LlamaROSEmbeddings rclpy.init() # create the llama_ros embeddings for langchain embeddings = LlamaROSEmbeddings() # create a vector database and assign it db = Chroma(embedding_function=embeddings) # create the retriever retriever = db.as_retriever(search_kwargs={"k": 5}) # add your texts db.add_texts(texts=["your_texts"]) # retrieve documents documents = retriever.invoke("your_query") print(documents) rclpy.shutdown() ```

llama_ros (Renranker)

Click to expand ```python import rclpy from llama_ros.langchain import LlamaROSReranker from llama_ros.langchain import LlamaROSEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import TextLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.retrievers import ContextualCompressionRetriever rclpy.init() # load the documents documents = TextLoader("../state_of_the_union.txt",).load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=100) texts = text_splitter.split_documents(documents) # create the llama_ros embeddings embeddings = LlamaROSEmbeddings() # create the VD and the retriever retriever = FAISS.from_documents( texts, embeddings).as_retriever(search_kwargs={"k": 20}) # create the compressor using the llama_ros reranker compressor = LlamaROSReranker() compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) # retrieve the documents compressed_docs = compression_retriever.invoke( "What did the president say about Ketanji Jackson Brown" ) for doc in compressed_docs: print("-" * 50) print(doc.page_content) print("\n") rclpy.shutdown() ```

llama_ros (LLM + RAG + Reranker)

Click to expand ```python import bs4 import rclpy from langchain import hub from langchain_chroma import Chroma from langchain_community.document_loaders import WebBaseLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter from llama_ros.langchain import LlamaROS, LlamaROSEmbeddings, LlamaROSReranker from langchain.retrievers import ContextualCompressionRetriever rclpy.init() # load, chunk and index the contents of the blog loader = WebBaseLoader( web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",), bs_kwargs=dict( parse_only=bs4.SoupStrainer( class_=("post-content", "post-title", "post-header") ) ), ) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents( documents=splits, embedding=LlamaROSEmbeddings()) # retrieve and generate using the relevant snippets of the blog retriever = vectorstore.as_retriever(search_kwargs={"k": 20}) prompt = hub.pull("rlm/rag-prompt") compressor = LlamaROSReranker(top_n=5) compression_retriever = ContextualCompressionRetriever( base_compressor=compressor, base_retriever=retriever ) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) # create and use the chain rag_chain = ( {"context": compression_retriever | format_docs, "question": RunnablePassthrough()} | prompt | LlamaROS(temp=0.0) | StrOutputParser() ) print(rag_chain.invoke("What is Task Decomposition?")) rclpy.shutdown() ```

chat_llama_ros

Click to expand ```python import rclpy from llama_ros.langchain import ChatLlamaROS from langchain_core.messages import SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_core.output_parsers import StrOutputParser rclpy.init() # create chat chat = ChatLlamaROS( temp=0.2, penalty_last_n=8, ) # create prompt template with messages prompt = ChatPromptTemplate.from_messages([ SystemMessage("You are a IA that just answer with a single word."), HumanMessagePromptTemplate.from_template(template=[ {"type": "text", "text": "Who is the character in the middle of the image?"}, {"type": "image_url", "image_url": "{image_url}"} ]) ]) # create the chain chain = prompt | chat | StrOutputParser() # stream and print the LLM output for text in self.chain.stream({"image_url": "https://pics.filmaffinity.com/Dragon_Ball_Bola_de_Dragaon_Serie_de_TV-973171538-large.jpg"}): print(text, end="", flush=True) print("", end="\n", flush=True) rclpy.shutdown() ```

Demos

LLM Demo

$ ros2 launch llama_bringup spaetzle.launch.py
$ ros2 run llama_demos llama_demo_node --ros-args -p prompt:="your prompt"

https://github.com/mgonzs13/llama_ros/assets/25979134/9311761b-d900-4e58-b9f8-11c8efefdac4

Embeddings Generation Demo

$ ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/bge-base-en-v1.5.yaml
$ ros2 run llama_demos llama_embeddings_demo_node

https://github.com/user-attachments/assets/7d722017-27dc-417c-ace7-bf6b747e4ced

Reranking Demo

$ ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/jina-reranker.yaml
$ ros2 run llama_demos llama_rerank_demo_node

https://github.com/user-attachments/assets/4b4adb4d-7c70-43ea-a2c1-9be57d211484

VLM Demo

$ ros2 launch llama_bringup minicpm-2.6.launch.py
$ ros2 run llama_demos llava_demo_node --ros-args -p prompt:="your prompt" -p image_url:="url of the image" -p use_image:="whether to send the image"

https://github.com/mgonzs13/llama_ros/assets/25979134/4a9ef92f-9099-41b4-8350-765336e3503c

Chat Template Demo

$ ros2 llama launch MiniCPM-2.6.yaml
Click to expand MiniCPM-2.6 ```yaml use_llava: True n_ctx: 8192 n_batch: 512 n_gpu_layers: 20 n_threads: 1 n_predict: 8192 image_prefix: "" image_suffix: "" model_repo: "openbmb/MiniCPM-V-2_6-gguf" model_filename: "ggml-model-Q4_K_M.gguf" mmproj_repo: "openbmb/MiniCPM-V-2_6-gguf" mmproj_filename: "mmproj-model-f16.gguf" stopping_words: ["<|im_end|>"] ```
$ ros2 run llama_demos chatllama_demo_node

ChatLlamaROS demo

Full Demo (LLM + chat template + RAG + Reranking + Stream)

$ ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/bge-base-en-v1.5.yaml
$ ros2 llama launch ~/ros2_ws/src/llama_ros/llama_bringup/models/jina-reranker.yaml
$ ros2 llama launch Llama-3.yaml
Click to expand Llama-3.yaml ```yaml n_ctx: 4096 n_batch: 256 n_gpu_layers: 33 n_threads: -1 n_predict: -1 model_repo: "lmstudio-community/Llama-3.2-1B-Instruct-GGUF" model_filename: "Llama-3.2-1B-Instruct-Q8_0.gguf" stopping_words: ["<|eot_id|>"] ```
$ ros2 run llama_demos llama_rag_demo_node

https://github.com/user-attachments/assets/b4e3957d-1f92-427b-a1a8-cfc76737c0d6