This repo presents some example codes to reproduce some results in GIT: A Generative Image-to-text Transformer for Vision and Language.
Install azfuse. The tool is used to automatically download the data. The configuration of AzFuse has already been in this repo.
Download the source code by
git clone https://github.com/microsoft/GenerativeImage2Text.git
cd GenerativeImage2Text
Install the package
pip install -r requirements.txt
python setup.py build develop
Inference on a single image or multiple frames:
# single image, captioning
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_image', \
'image_path': 'aux_data/images/1.jpg', \
'model_name': 'GIT_BASE', \
'prefix': '', \
}"
# single image, question answering
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_image', \
'image_path': 'aux_data/images/1.jpg', \
'model_name': 'GIT_BASE_VQAv2', \
'prefix': 'what is it?', \
}"
# multiple images, captioning
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_image', \
'image_path': ['aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg'], \
'model_name': 'GIT_BASE_VATEX', \
'prefix': '', \
}"
# multiple images, question answering
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_image', \
'image_path': ['aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg', 'aux_data/images/1.jpg'], \
'model_name': 'GIT_BASE_MSRVTT_QA', \
'prefix': 'what is it?', \
}"
prefix
is empty, it is effectively the captioning task.prefix
is a question, it is effectively the visual question answering task.image_path
if it is for video. The example here is 6 identical images, only
for a demo purpose. It should be different image frames from a video.model_name
here can be the following. Performance details can be found in the reference paper.model_name | Information | Performance |
---|---|---|
GIT_BASE | pretrained on 4M images | |
GIT_BASE_COCO | fine-tuned on COCO | CIDEr: 131.4 |
GIT_BASE_TEXTCAPS | fine-tuned on TextCaps for captioning | val/CIDEr: 64.9 |
GIT_BASE_VQAv2 | fine-tuned on VQAv2 | test-dev: 72.72 |
GIT_BASE_TEXTVQA | fine-tuned on TextVQA | val/acc: 18.81 |
GIT_BASE_VATEX | fine-tuned on VATEX for captioning | public/test/CIDEr: 60.0 |
GIT_BASE_MSRVTT | fine-tuned on MSRVTT for captioning | test/CIDEr: 57.8 |
GIT_BASE_MSRVTT_QA | fine-tuned on MSRVTT for question answering | acc: 41.0 |
GIT_LARGE | pretrained on 14M images | |
GIT_LARGE_COCO | fine-tuned on COCO | CIDEr: 138.5 |
GIT_LARGE_TEXTCAPS | fine-tuned on TextCaps for captioning | val/CIDEr: 106.3 |
GIT_LARGE_VQAv2 | fine-tuned on VQAv2 | test-dev: 75.51 |
GIT_LARGE_TEXTVQA | fine-tuned on TextVQA | val/acc: 37.47 |
GIT_LARGE_VATEX | fine-tuned on VATEX for captioning | public/test/CIDEr: 72.5 |
GIT_LARGE_MSRVTT | fine-tuned on MSRVTT for captioning | test/CIDEr: 64.1 |
GIT_LARGE_MSRVTT_QA | fine-tuned on MSRVTT for question answering | acc: 42.7 |
model_name | Information | Performance |
---|---|---|
GIT_LARGE_R | pretrained on 14M images with special tag removed | |
GIT_LARGE_R_COCO | fine-tuned on COCO | CIDEr: 137.6 |
GIT_LARGE_R_TEXTCAPS | fine-tuned on TextCaps for captioning | val/CIDEr: 105.3 |
Inference on a TSV file, which is a collection of multiple images.
'caption'
. For the
question answering TSV, it should contain at least question_id
and
question
.# base
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_tsv', \
'image_tsv': 'data/coco_caption/test.img.tsv', \
'model_name': 'GIT_BASE_COCO', \
'question_tsv': null, \
'out_tsv': 'inference/GIT_BASE_COCO/coco.tsv', \
}"
# GIT_LARGE_COCO. If there are 8 GPUs, it can parallel by mpirun -n 8
AZFUSE_TSV_USE_FUSE=1 mpirun -n 8 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_tsv', \
'image_tsv': 'data/coco_caption/test.img.tsv', \
'model_name': 'GIT_LARGE_COCO', \
'question_tsv': null, \
'out_tsv': 'inference/GIT_LARGE_COCO/coco.tsv', \
}"
# base
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'evaluate_on_coco_caption', \
'res_file': 'inference/GIT_BASE_COCO/coco.tsv', \
'label_file': 'data/coco_caption/test.caption.tsv', \
}"
The CIDEr score should be 131.35 for GIT_BASE_COCO
and 138.45 for GIT_LARGE_COCO
.
If you get lower score (e.g. 126 for the base model),
the reason could be
the misalignment of the environment, e.g. pytorch version.
nvidia-docker run --ipc=host amsword/setup:py38pt19u20cu11 \
bash -c "mkdir -p /tmp/code \
&& cd /tmp/code \
&& pip install git+https://github.com/microsoft/azfuse.git \
&& git clone https://github.com/amsword/generativeimage2text.git \
&& cd generativeimage2text \
&& pip install -r requirements.txt \
&& python setup.py build develop \
&& AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_tsv', \
'image_tsv': 'data/coco_caption/test.img.tsv', \
'model_name': 'GIT_BASE_COCO', \
'question_tsv': null, \
'out_tsv': 'inference/GIT_BASE_COCO/coco.tsv', \
}" \
&& AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'evaluate_on_coco_caption', \
'res_file': 'inference/GIT_BASE_COCO/coco.tsv', \
'label_file': 'data/coco_caption/test.caption.tsv', \
'outfile': 'inference/GIT_BASE_COCO/coco.score.json', \
}" \
&& cat inference/GIT_BASE_COCO/coco.score.json \
"
# base model
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_tsv', \
'image_tsv': 'data/TaxVQAv2/test.tsv', \
'model_name': 'GIT_BASE_VQAv2', \
'question_tsv': 'data/TaxVQAv2/test.caption.tsv', \
'out_tsv': 'inference/GIT_BASE_VQAv2/snapshot/vqav2.tsv', \
}"
# GIT_LARGE_VQAv2 with 8 GPUs.
AZFUSE_TSV_USE_FUSE=1 mpirun -n 8 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_tsv', \
'image_tsv': 'data/TaxVQAv2/test.tsv', \
'model_name': 'GIT_LARGE_VQAv2', \
'question_tsv': 'data/TaxVQAv2/test.caption.tsv', \
'out_tsv': 'inference/GIT_LARGE_VQAv2/snapshot/vqav2.tsv', \
}"
Convert the output tsv to the json format for submission to evalai
# base model
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'convert_tsv_to_vqa_json', \
'predict_file': 'inference/GIT_BASE_VQAv2/snapshot/vqav2.tsv', \
'out_json': 'inference/GIT_BASE_VQAv2/snapshot/vqav2.json', \
}"
# large model
AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'convert_tsv_to_vqa_json', \
'predict_file': 'inference/GIT_LARGE_VQAv2/snapshot/vqav2.tsv', \
'out_json': 'inference/GIT_LARGE_VQAv2/snapshot/vqav2.json', \
}"
Submit the file of inference/GIT_BASE_VQAv2/snapshot/vqav2.json
to evalai
and you should get 72.72
on test-dev
. If it is GIT_LARGE_VQAv2
, the accuracy is
75.51
.
(optional) To exactly reproduce the number, you can use the following:
# base model
nvidia-docker run --ipc=host amsword/setup:py38pt19u20cu11 \
bash -c "mkdir /tmp/code \
&& cd /tmp/code \
&& pip install git+https://github.com/microsoft/azfuse.git \
&& git clone https://github.com/amsword/generativeimage2text.git \
&& cd generativeimage2text \
&& pip install -r requirements.txt \
&& python setup.py build develop \
&& AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'test_git_inference_single_tsv', \
'image_tsv': 'data/TaxVQAv2/test.tsv', \
'model_name': 'GIT_BASE_VQAv2', \
'question_tsv': 'data/TaxVQAv2/test.caption.tsv', \
'out_tsv': 'inference/GIT_BASE_VQAv2/snapshot/vqav2.tsv', \
}" \
&& AZFUSE_TSV_USE_FUSE=1 python -m generativeimage2text.inference -p "{'type': 'convert_tsv_to_vqa_json', \
'predict_file': 'inference/GIT_BASE_VQAv2/snapshot/vqav2.tsv', \
'out_json': 'inference/GIT_BASE_VQAv2/snapshot/vqav2.json', \
}" \
}"
Note that, please modify the docker command properly so that the output file can be saved permanently to the host machine. It is also recommended to run it inside the docker container by
nvidia-docker run --ipc=host amsword/setup:py38pt19u20cu11 sleep infinity
docker ps # get the docker container ID
docker exec -it container_id /bin/bash # attach inside the docker container
# all other commands to run the inference.
The repo shows the key code path of constructing the network input with transformations and forward/backward. The code can be plugged into any trainer easily. Here is the example for the base model.
python -m generativeimage2text.train -p "{'type': 'forward_backward_example', \
'image_files': ['aux_data/images/1.jpg', 'aux_data/images/2.jpg'], \
'captions': ['a couple of boats in a large body of water.', 'a view of a mountain with a tree'], \
}"
python -m generativeimage2text.train -p "{'type': 'forward_backward_example', \
'image_files': ['aux_data/images/1.jpg', 'aux_data/images/2.jpg'], \
'prefixs': ['what is this?', 'how many trees?'], \
'captions': ['several boats in a large body of water', '1'], \
}"
Save the file of LOC_synset_mapping.txt
from Kaggle.
under aux_data/imagenet/
Convert the wordnet ID to readable names as follows
python -m generativeimage2text.data_prepare -p "{'type': 'generate_imagenet_unique_names'}"
The input file is hard coded as ./aux_data/imagenet/LOC_synset_mapping.txt
and the
output file is ./aux_data/imagenet/imagenet_unique_readable_names.txt
Please consider to cite the following reference if it helps.
@article{wang2022git,
title={GIT: A Generative Image-to-text Transformer for Vision and Language},
author={Wang, Jianfeng and Yang, Zhengyuan and Hu, Xiaowei and Li, Linjie and Lin, Kevin and Gan, Zhe and Liu, Zicheng and Liu, Ce and Wang, Lijuan},
journal={arXiv preprint arXiv:2205.14100},
year={2022}
}
The model is now available in 🤗 Transformers. You can also find a fine-tuning guide on image captioning with GIT here. Thanks to Niels Rogge for contributing the model to 🤗 Transformers and Sayak Paul for the fine-tuning guide.
Part of the code is based on transformers, clip, maskrcnn-benchmark, oscar, virtex.
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.