Trace is a new AutoDiff-like tool for training AI systems end-to-end with general feedback (like numerical rewards or losses, natural language text, compiler errors, etc.). Trace generalizes the back-propagation algorithm by capturing and propagating an AI system's execution trace. Trace is implemented as a PyTorch-like Python library. Users write Python code directly and can use Trace primitives to optimize certain parts, just like training neural networks!
Paper | Project website | Documentation | Blogpost
Simply run
pip install trace-opt
Or for development, clone the repo and run the following.
pip install -e .
The library requires Python >= 3.9. The installation script will git clone AutoGen. You may require Git Large File Storage if git is unable to clone the repository otherwise.
Trace has two primitives: node
and bundle
. node
is a primitive to define a node in the computation graph. bundle
is a primitive to define a function that can be optimized.
from opto.trace import node
x = node(1, trainable=True)
y = node(3)
z = x / y
z2 = x / 3 # the int 3 would be converted to a node automatically
list_of_nodes = [x, node(2), node(3)]
node_of_list = node([1, 2, 3])
node_of_list.append(3)
# easy built-in computation graph visualization
z.backward("maximize z", visualize=True, print_limit=25)
Once a node is declared, all the following operations on the node object will be automatically traced.
We built many magic functions to make a node object act like a normal Python object. By marking trainable=True
, we
tell our optimizer that this node's content
can be changed by the optimizer.
For functions, Trace uses decorators like @bundle to wrap over Python functions. A bundled function behaves like any other Python functions.
from opto.trace import node, bundle
@bundle(trainable=True)
def strange_sort_list(lst):
'''
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
'''
lst = sorted(lst)
return lst
test_input = [1, 2, 3, 4]
test_output = strange_sort_list(test_input)
print(test_output)
Now, after declaring what is trainable and what isn't, and use node
and bundle
to define the computation graph, we
can use the optimizer to optimize the computation graph.
import autogen
from opto.optimizers import OptoPrime
# we first declare a feedback function
# think of this as the reward function (or loss function)
def get_feedback(predict, target):
if predict == target:
return "test case passed!"
else:
return "test case failed!"
test_ground_truth = [1, 4, 2, 3]
test_input = [1, 2, 3, 4]
epoch = 2
optimizer = OptoPrime(strange_sort_list.parameters(),
config_list=autogen.config_list_from_json("OAI_CONFIG_LIST"))
for i in range(epoch):
print(f"Training Epoch {i}")
test_output = strange_sort_list(test_input)
correctness = test_output.eq(test_ground_truth)
feedback = get_feedback(test_output, test_ground_truth)
if correctness:
break
optimizer.zero_feedback()
optimizer.backward(correctness, feedback)
optimizer.step()
Then, we can use the familiar PyTorch-like syntax to conduct the optimization.
Level | Tutorial | Run in Colab | Description |
---|---|---|---|
Beginner | Getting Started | Introduces basic primitives like node and bundle . Showcases a code optimization pipeline. |
|
Beginner | Adaptive AI Agent | Introduce primitive model that allows anyone to build self-improving agents that react to environment feedback. Shows how an LLM agent learns to place a shot in a Battleship game. |
|
Intermediate | Multi-Agent Collaboration | N/A | Demonstrates how Trace can be used for multi-agent collaboration environment in Virtualhome. |
Intermediate | NLP Prompt Optimization | Shows how Trace can optimizes prompt and code together jointly for BigBench-Hard 23 tasks. | |
Advanced | Robotic Arm Control | Trace can optimize code to control a robotic arm after observing a full trajectory of interactions. |
Currently, we support three optimizers:
Using our framework, you can seamlessly switch between different optimizers:
optimizer1 = OptoPrime(strange_sort_list.parameters())
optimizer2 = OPRO(strange_sort_list.parameters())
optimizer3 = TextGrad(strange_sort_list.parameters())
Here is a summary of the optimizers:
Computation Graph | Code as Functions | Library Support | Supported Optimizers | Speed | Large Graph | |
---|---|---|---|---|---|---|
OPRO | ❌ | ❌ | ❌ | OPRO | ⚡️ | ✅ |
TextGrad | ✅ | ❌ | ✅ | TextGrad | 🐌 | ✅ |
Trace | ✅ | ✅ | ✅ | OPRO, OptoPrime, TextGrad | ⚡ | ✅ |
The table evaluates the frameworks in the following aspects:
We provide a comparison to validate our implementation of TextGrad in Trace:
To produce this table, we ran the TextGrad pip-installed repo on 2024-10-30, and we also include the numbers reported in the TextGrad paper. The LLM APIs are called around the same time to ensure a fair comparison. TextGrad paper's result was reported in 2024-06.
You can also easily implement your own optimizer that works directly with TraceGraph
(more tutorials on how to work
with TraceGraph coming soon).
If you use this code in your research please cite the following publication:
@article{cheng2024trace,
title={Trace is the Next AutoDiff: Generative Optimization with Rich Feedback, Execution Traces, and LLMs},
author={Cheng, Ching-An and Nie, Allen and Swaminathan, Adith},
journal={arXiv preprint arXiv:2406.16218},
year={2024}
}
Improving Parallel Program Performance Through DSL-Driven Code Generation with LLM Optimizers Work from Stanford, NVIDIA, Intel, Visa Research.
@article{wei2024improving,
title={Improving Parallel Program Performance Through DSL-Driven Code Generation with LLM Optimizers},
author={Wei, Anjiang and Nie, Allen and Teixeira, Thiago SFX and Yadav, Rohan and Lee, Wonchan and Wang, Ke and Aiken, Alex},
journal={arXiv preprint arXiv:2410.15625},
year={2024}
}
The Importance of Directional Feedback for LLM-based Optimizers Explains the role of feedback in LLM-based optimizers. An early work that influenced Trace's clean separation between the platform, optimizer, and feedback.
@article{nie2024importance,
title={The Importance of Directional Feedback for LLM-based Optimizers},
author={Nie, Allen and Cheng, Ching-An and Kolobov, Andrey and Swaminathan, Adith},
journal={arXiv preprint arXiv:2405.16434},
year={2024}
}
A previous version of Trace was tested with gpt-4-0125-preview on numerical optimization, simulated traffic control, big-bench-hard, and llf-metaworld tasks, which demonstrated good optimization performance on multiple random seeds; please see the paper for details.
Note For gpt-4o, please use the version gpt-4o-2024-08-06 (onwards), which fixes the structured output issue of gpt-4o-2024-05-13. While gpt-4 works reliably most of the time, we've found gpt-4o-2024-05-13 often hallucinates even in very basic optimization problems and does not follow instructions. This might be due to the current implementation of optimizers rely on outputing in json format. Issues of gpt-4o with json have been reported in the communities ( see example).
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.