Homotopy Type Theory is an interpretation of Martin-Löf’s intensional type theory into abstract homotopy theory. Propositional equality is interpreted as homotopy and type isomorphism as homotopy equivalence. Logical constructions in type theory then correspond to homotopy-invariant constructions on spaces, while theorems and even proofs in the logical system inherit a homotopical meaning. As the natural logic of homotopy, type theory is also related to higher category theory as it is used e.g. in the notion of a higher topos.
The HoTT library is a development of homotopy-theoretic ideas in the Coq proof assistant. It draws many ideas from Vladimir Voevodsky's Foundations library (which has since been incorporated into the UniMath library) and also cross-pollinates with the HoTT-Agda library. See also: HoTT in Lean2, Spectral Sequences in Lean2, and Cubical Agda.
More information about this library can be found in:
Other publications related to the library can be found here.
Installation details are explained in the file INSTALL.md.
It is possible to use the HoTT library directly on the command line with the coqtop
script, but who does that?
It is probably better to use Proof General and Emacs.
Contributions to the HoTT library are very welcome! For style guidelines and further information, see the file STYLE.md.
The library is released under the permissive BSD 2-clause license, see the file LICENSE.txt for further information. In brief, this means you can do whatever you like with it, as long as you preserve the Copyright messages. And of course, no warranty!
More information can be found in the Wiki.