mingcv / Bread

Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"
Apache License 2.0
85 stars 13 forks source link

Low-light Image Enhancement via Breaking Down the Darkness

by Xiaojie Guo, Qiming Hu.

:boom: Update Online Replicate Demo: Replicate

▶️ Online Colab Demo: Open In Colab

📖 Papers: [[arxiv](https://arxiv.org/abs/2111.15557)] [[IJCV](https://link.springer.com/article/10.1007/s11263-022-01667-9)] ### 1. Dependencies * Python3 * PyTorch>=1.0 * OpenCV-Python, TensorboardX * NVIDIA GPU+CUDA ### 2. Network Architecture ![figure_arch](https://github.com/mingcv/Bread/blob/main/figures/Bread_architecture_full.png) ### 3. Data Preparation #### 3.1. Training dataset * 485 low/high-light image pairs from our485 of [LOL dataset](https://daooshee.github.io/BMVC2018website/), each low image of which is augmented by our [exposure_augment.py](https://github.com/mingcv/Bread/blob/main/exposure_augment.py) to generate 8 images under different exposures. ([Download Link for Augmented LOL](https://drive.google.com/file/d/1gyX2kYJWuj3C00eobd49MjRuNbZ29dqN/view?usp=sharing)) * To train the MECAN (if it is desired), 559 randomly-selected multi-exposure sequences from [SICE](https://github.com/csjcai/SICE) are adopted ([Download Link for a resized version](https://drive.google.com/file/d/1OTNP-QJ3Nade5my04A2iYVTY77IQBEMf/view?usp=sharing)). #### 3.2. Tesing dataset The images for testing can be downloaded in [this link](https://github.com/mingcv/Bread/releases/download/checkpoints/data.zip).

4. Usage

4.1. Training

4.2. Testing

4.3. Trained weights

Please refer to our release.

5. Quantitative comparison on eval15

table_eval

6. Visual comparison on eval15

figure_eval

7. Visual comparison on DICM

figure_test_dicm

8. Visual comparison on VV and MEF-DS

figure_test_vv_mefds