mjqqtbtwqi5 / SCVQA

Screen Content Video Quality Assessment
MIT License
0 stars 0 forks source link

SCVQA

Screen Content Video Quality Assessment

Video data and feature data will not be included since file sizes of them are too large.

Description

This project will be separated into 2 parts:

  1. CNN Features Extraction
    • Local machine: cnn_feature_extraction.py
    • Google Colab: cnn_feature_extraction.ipynb
  2. Temporal Memory Effects (deep learning model training)
    • Local machine: train.py
    • Google Colab: train.ipynb

Setup for Anaconda env

conda remove -n SCVQA-env --all

conda create -n SCVQA-env python=3.9.18

conda activate SCVQA-env

conda config --env --add channels conda-forge

conda install -c conda-forge ffmpeg

pip install -r requirements.txt

# conda deactivate

CNN Features Extraction with local machine

python cnn_feature_extraction.py

Training with local machine

python train.py --model={LSTM,Transformer,VSFA_GRU} --database={CSCVQ,SCVD} --cnn_extraction={_ResNet18,_ResNet34,_ResNet50,_ResNet101,_ResNet34_ResNet50}

Optional args for train.py

  1. --batch_size, default=32
  2. --num_workers, default=0
  3. --num_epochs, default=100
  4. --learning_rate, default=0.00001
  5. --seed, type=int, default=22035001

Examples:

python train.py --model=Transformer --database=CSCVQ --cnn_extraction=ResNet50 --batch_size=8 --num_epochs=1000
python train.py --model=Transformer --database=SCVD --cnn_extraction=ResNet50 --batch_size=32 --num_epochs=1000
python train.py --model=LSTM --database=CSCVQ --cnn_extraction=ResNet50 --batch_size=8 --num_epochs=1000
python train.py --model=LSTM --database=SCVD --cnn_extraction=ResNet50 --batch_size=32 --num_epochs=1000