Package website: release | dev
mlr3tuning is the hyperparameter optimization package of the mlr3 ecosystem. It features highly configurable search spaces via the paradox package and finds optimal hyperparameter configurations for any mlr3 learner. mlr3tuning works with several optimization algorithms e.g. Random Search, Iterated Racing, Bayesian Optimization (in mlr3mbo) and Hyperband (in mlr3hyperband). Moreover, it can automatically optimize learners and estimate the performance of optimized models with nested resampling. The package is built on the optimization framework bbotk.
mlr3tuning is extended by the following packages.
There are several sections about hyperparameter optimization in the mlr3book.
The gallery features a collection of case studies and demos about optimization.
The cheatsheet summarizes the most important functions of mlr3tuning.
Install the last release from CRAN:
install.packages("mlr3tuning")
Install the development version from GitHub:
remotes::install_github("mlr-org/mlr3tuning")
We optimize the cost
and gamma
hyperparameters of a support vector
machine on the
Sonar data
set.
library("mlr3learners")
library("mlr3tuning")
learner = lrn("classif.svm",
cost = to_tune(1e-5, 1e5, logscale = TRUE),
gamma = to_tune(1e-5, 1e5, logscale = TRUE),
kernel = "radial",
type = "C-classification"
)
We construct a tuning instance with the ti()
function. The tuning
instance describes the tuning problem.
instance = ti(
task = tsk("sonar"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("none")
)
instance
## <TuningInstanceBatchSingleCrit>
## * State: Not optimized
## * Objective: <ObjectiveTuningBatch:classif.svm_on_sonar>
## * Search Space:
## id class lower upper nlevels
## 1: cost ParamDbl -11.51293 11.51293 Inf
## 2: gamma ParamDbl -11.51293 11.51293 Inf
## * Terminator: <TerminatorNone>
We select a simple grid search as the optimization algorithm.
tuner = tnr("grid_search", resolution = 5)
tuner
## <TunerBatchGridSearch>: Grid Search
## * Parameters: batch_size=1, resolution=5
## * Parameter classes: ParamLgl, ParamInt, ParamDbl, ParamFct
## * Properties: dependencies, single-crit, multi-crit
## * Packages: mlr3tuning, bbotk
To start the tuning, we simply pass the tuning instance to the tuner.
tuner$optimize(instance)
## cost gamma learner_param_vals x_domain classif.ce
## 1: 5.756463 -5.756463 <list[4]> <list[2]> 0.1828847
The tuner returns the best hyperparameter configuration and the corresponding measured performance.
The archive contains all evaluated hyperparameter configurations.
as.data.table(instance$archive)[, .(cost, gamma, classif.ce, batch_nr, resample_result)]
## cost gamma classif.ce batch_nr resample_result
## 1: -5.756463 5.756463 0.4663216 1 <ResampleResult>
## 2: 5.756463 -5.756463 0.1828847 2 <ResampleResult>
## 3: 11.512925 5.756463 0.4663216 3 <ResampleResult>
## 4: 5.756463 11.512925 0.4663216 4 <ResampleResult>
## 5: -11.512925 -11.512925 0.4663216 5 <ResampleResult>
## ---
## 21: -5.756463 -5.756463 0.4663216 21 <ResampleResult>
## 22: 11.512925 11.512925 0.4663216 22 <ResampleResult>
## 23: -11.512925 11.512925 0.4663216 23 <ResampleResult>
## 24: 11.512925 -5.756463 0.1828847 24 <ResampleResult>
## 25: 0.000000 -5.756463 0.2402346 25 <ResampleResult>
The mlr3viz package visualizes tuning results.
library(mlr3viz)
autoplot(instance, type = "surface")
We fit a final model with optimized hyperparameters to make predictions on new data.
learner$param_set$values = instance$result_learner_param_vals
learner$train(tsk("sonar"))