Official implementation of CVPR 2024 paper vid-TLDR: Training Free Token merging for Light-weight Video Transformer.
Please refer to UMT for environments.
# MSRVTT
CUDA_VISIBLE_DEVICES=5 python tasks/retrieval.py ./exp/finetuning/ret_msrvtt/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [600,200,100,0,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=1 python tasks/retrieval.py ./exp/finetuning/ret_msrvtt/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [550,400,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# your_msrvtt_path
# MSVD
CUDA_VISIBLE_DEVICES=2 python tasks/retrieval.py ./exp/finetuning/ret_msvd/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [450,250,200,0,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=3 python tasks/retrieval.py ./exp/finetuning/ret_msvd/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [600,200,100,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# ActivityNet
CUDA_VISIBLE_DEVICES=4 python tasks/retrieval.py ./exp/finetuning/ret_anet/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [500,0,0,0,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=5 python tasks/retrieval.py ./exp/finetuning/ret_anet/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [600,300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# Didemo
CUDA_VISIBLE_DEVICES=6 python tasks/retrieval.py ./exp/finetuning/ret_didemo/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [250,150,150,150,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=7 python tasks/retrieval.py ./exp/finetuning/ret_didemo/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [800,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# LSMDC
CUDA_VISIBLE_DEVICES=0 python tasks/retrieval.py ./exp/finetuning/ret_lsmdc/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [400,150,150,0,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=0 python tasks/retrieval.py ./exp/finetuning/ret_lsmdc/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [250,250,200,200,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# SSV2-Lable
CUDA_VISIBLE_DEVICES=0 python tasks/retrieval.py ./exp/finetuning/ret_ssv2_label/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [200,200,200,100,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=0 python tasks/retrieval.py ./exp/finetuning/ret_ssv2_label/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [450,250,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# SSV2-Template
CUDA_VISIBLE_DEVICES=0 python tasks/retrieval.py ./exp/finetuning/ret_ssv2_tpl/b16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [400,300,0,0,0,0,0,0,0,0,0,0]
CUDA_VISIBLE_DEVICES=0 python tasks/retrieval.py ./exp/finetuning/ret_ssv2_tpl/l16_25m.py batch_size 1 pretrained_path /path/to/checkpoint/ model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [350,300,100,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# MSRVTT
python tasks/vqa.py ./exp/finetuning/qa_msrvtt/b16_25m.py model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [600,200,0,0,0,0,0,0,0,0,0,0]
python tasks/vqa.py ./exp/finetuning/qa_msrvtt/l16_25m.py model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [400,400,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
# MSVD
python tasks/vqa.py ./exp/finetuning/qa_msvd/b16_25m.py model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [600,200,0,0,0,0,0,0,0,0,0,0]
python tasks/vqa.py ./exp/finetuning/qa_msvd/l16_25m.py model.vision_encoder.vidTLDR_use True model.vision_encoder.vidTLDR_r [400,400,100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
@inproceedings{choi2024vid,
title={vid-TLDR: Training Free Token merging for Light-weight Video Transformer},
author={Choi, Joonmyung and Lee, Sanghyeok and Chu, Jaewon and Choi, Minhyuk and Kim, Hyunwoo J.},
booktitle={Conference on Computer Vision and Pattern Recognition},
year={2024}
}