The source code is hosted on github. This is a work developed at ZOFUND under the supervision of Mr. Shoubo Sheng. It's a fork from privateGPT, which has sqlcoder integrated with the help of langchain, to enable text-to-sql generation.
Install dependencies:
# conda environment recommended
pip install -r requirements.txt
Define necessary environment variables:
# Copy `example.env` file to `.env`
cp example.env .env
Use example data
# enter misc directory
cd misc
# format questions
python format_question.py
# populate sqlite database
python insert.py
# return to project level
cd ..
Build embedding vector store:
python ingest.py [--help]
Run the app:
# Streamlit interface (recommended)
streamlit run app.py
# Text-to-sql model cli
python privateGPT.py [--help]
# .ipynb LoC
jq '.cells[] | select(.cell_type == "code") .source[]' **/*.ipynb | wc -l
# .py Loc
git ls-files | grep -i "\.py$" | xargs wc -l