Qt.py enables you to write software that runs on any of the 4 supported bindings - PySide2, PyQt5, PySide and PyQt4.
Date | Version | Event |
---|---|---|
May 2024 | [1.4.1][] | Added support for Qt 6 |
Jan 2024 | 1.3.9 | Run CI on Github Actions, instead of Travis CI. |
Sep 2020 | 1.3.0 | Stability improvements and greater ability for QtCompat.wrapInstance to do its job |
Jun 2019 | 1.2.1 | Bugfixes and additional members |
Jan 2018 | 1.1.0 | Adds new test suite, new members |
Mar 2017 | 1.0.0 | Increased safety, backwards incompatible |
Sep 2016 | 0.6.9 | Stable release |
Sep 2016 | 0.5.0 | Alpha release of --convert |
Jun 2016 | 0.2.6 | First release of Qt.py |
Write once, run in any binding.
Qt.py was born in the film and visual effects industry to address the growing need for software capable of running with more than one flavor of the Qt bindings for Python - PySide, PySide2, PyQt4 and PyQt5.
Goal | Description |
---|---|
Support co-existence | Qt.py should not affect other bindings running in same interpreter session. |
Build for one, run with all | Code written with Qt.py should run on any binding. |
Explicit is better than implicit | Differences between bindings should be visible to you. |
See CONTRIBUTING.md
for more details.
Qt.py is a single file and can either be copy/pasted into your project, downloaded as-is, cloned as-is or installed via pip
or conda
.
# From PyPI
$ pip install Qt.py
# From Anaconda
$ conda config --add channels conda-forge
$ conda install qt.py
.b
, e.g. 1.1.0.b3
.
Use Qt.py as you would use PySide2.
import sys
from Qt import QtWidgets
app = QtWidgets.QApplication(sys.argv)
button = QtWidgets.QPushButton("Hello World")
button.show()
app.exec_()
All members of Qt
stem directly from those available via PySide2, along with these additional members.
Attribute | Returns | Description |
---|---|---|
__version__ |
str |
Version of this project |
__binding__ |
str |
A string reference to binding currently in use |
__qt_version__ |
str |
Reference to version of Qt, such as Qt 5.6.1 |
__binding_version__ |
str |
Reference to version of binding, such as PySide 1.2.6 |
Example
>>> from Qt import __binding__
>>> __binding__
'PyQt5'
Qt.py also provides compatibility wrappers for critical functionality that differs across bindings, these can be found in the added QtCompat
submodule.
Attribute | Returns | Description |
---|---|---|
loadUi(uifile=str, baseinstance=QWidget) |
QObject |
Minimal wrapper of PyQt4.loadUi and PySide equivalent |
translate(...) |
function |
Compatibility wrapper around QCoreApplication.translate |
wrapInstance(addr=long, type=QObject) |
QObject |
Wrapper around shiboken2.wrapInstance and PyQt equivalent |
getCppPointer(object=QObject) |
long |
Wrapper around shiboken2.getCppPointer and PyQt equivalent |
isValid(object=QObject) |
bool |
Wrapper around shiboken2.isValid and PyQt equivalent |
dataChanged(topLeft=QModelIndex, bottomRight=QModelIndex, roles=[]) |
None |
Wrapper around QtCore.QAbstractItemModel.dataChanged.emit |
Example
>>> from Qt import QtCompat
>>> QtCompat.loadUi
Between Qt4 and Qt5 there have been many classes and class members that are obsolete. Under Qt.QtCompat there are many classes with names matching the classes they provide compatibility functions. These will match the PySide2 naming convention.
from Qt import QtCore, QtWidgets, QtCompat
header = QtWidgets.QHeaderView(QtCore.Qt.Horizontal)
QtCompat.QHeaderView.setSectionsMovable(header, False)
movable = QtCompat.QHeaderView.sectionsMovable(header)
This also covers inconsistencies between bindings. For example PyQt4's QFileDialog matches Qt4's return value of the selected. While all other bindings return the selected filename and the file filter the user used to select the file. Qt.QtCompat.QFileDialog
ensures that getOpenFileName(s) and getSaveFileName always return the tuple.
These are the publicly facing environment variables that in one way or another affect the way Qt.py is run.
Variable | Type | Description |
---|---|---|
QT_PREFERRED_BINDING_JSON | str | Override order and content of binding to try. This can apply per Qt.py namespace. |
QT_PREFERRED_BINDING | str | Override order and content of binding to try. Used if QT_PREFERRED_BINDING_JSON does not apply. |
QT_VERBOSE | bool | Be a little more chatty about what's going on with Qt.py |
QT_SIP_API_HINT | int | Sets the preferred SIP api version that will be attempted to set. |
Members of Qt.py is a subset of PySide2. Which means for a member to be made accessible via Qt.py, it will need to (1) be accessible via PySide2 and (2) each of the other supported bindings. This excludes large portions of the Qt framework, including the newly added QtQml and QtQuick modules but guarantees that anything you develop with Qt.py will work identically on any binding - PySide, PySide2, PyQt4 and PyQt5. If you need to use such excluded modules with Qt.py, please see QtSiteConfig.py.
We call this subset "common members" and these can be generated by running the build_membership.sh
script. The script will output all modules and members of each binding into individual JSON files. These JSON files are then compared and a common_members.json
file is generated. The contents of this file is copy-pasted into the _common_members
dictionary of Qt.py. Please note that the script will only use the very latest version of our Docker test suite to generate the common members subset, using the most up-to-date set of VFX Platform-stipulated software versions.
:warning: The version of PySide2 used as reference is the one specified on VFX Platform, currently version is 2.0.x. But unfortunately, the version string of PySide2 is not yet properly maintained and the VFX Platform does not specifiy a explicit commit SHA for PySide2. Therefore, it could be difficult to know exactly which PySide2 is running on your system (unless you built it from source). In layman's terms; as PySide2 is in development and is continuously adding new support for modules, you may see differences between PySide2 built early in the year vs PySide2 built later in the year. The exact commit SHAs of PySide2 used by the Qt.py test suite can be reviewed in DOCKER.md. QtC implemented an alternative way to identify which version of PySide2 you are running. You can read more about that here.
Some bindings offer features not available in others, you can use __binding__
to capture those.
if "PySide" in __binding__:
do_pyside_stuff()
If your system has multiple choices where one or more is preferred, you can override the preference and order in which they are tried with this environment variable.
$ set QT_PREFERRED_BINDING=PyQt5 # Windows
$ export QT_PREFERRED_BINDING=PyQt5 # Unix/OSX
$ python -c "import Qt;print(Qt.__binding__)"
PyQt5
Constrain available choices and order of discovery by supplying multiple values.
# Try PyQt4 first and then PySide, but nothing else.
$ export QT_PREFERRED_BINDING=PyQt4:PySide
Using the OS path separator (os.pathsep
) which is :
on Unix systems and ;
on Windows.
If you need to control the preferred choice of a specific vendored Qt.py you can use the QT_PREFERRED_BINDING_JSON
environment variable instead.
{
"Qt":["PyQt5"],
"myproject.vendor.Qt":["PyQt5"],
"default":["PySide2"]
}
This json data forces any code that uses import Qt
or import myproject.vendor.Qt
to use PyQt5(from x import Qt
etc works too, this is based on __name__
of the Qt.py being imported). Any other imports of a Qt module will use the "default" PySide2 only. If "default"
is not provided or a Qt.py being used does not support QT_PREFERRED_BINDING_JSON
, QT_PREFERRED_BINDING
will be respected.
# Try PyQt5 first and then PyQt4 for the Qt module name space.
$ export QT_PREFERRED_BINDING_JSON="{"Qt":["PyQt5","PyQt4"]}"
# Use PyQt4 for any other Qt module name spaces.
$ export QT_PREFERRED_BINDING=PySide2
Add or remove members from Qt.py at run-time.
If you need to expose a module that isn't included in Qt.py by default or wish to remove something from being exposed in Qt.py you can do so by creating a QtSiteConfig.py
module and making it available to Python.
QtSiteConfig.py
update_members
# QtSiteConfig.py
def update_members(members):
"""Called by Qt.py at run-time to modify the modules it makes available.
Arguments:
members (dict): The members considered by Qt.py
"""
members.pop("QtCore")
Finally, expose the module to Python.
$ set PYTHONPATH=/path/to
$ python -c "import Qt.QtCore"
ImportError: No module named Qt.QtCore
Linux and MacOS users, replace
set
withexport
WARNING - ALPHA FUNCTIONALITY
See #132 for details.
.ui
files compiled via pyside2-uic
inherently contain traces of PySide2 - e.g. the line from PySide2 import QtGui
.
In order to use these with Qt.py, or any other binding, one must first erase such traces and replace them with cross-compatible code.
$ pyside2-uic my_ui.ui -o my_ui.py
$ python -m Qt --convert my_ui.py
# Creating "my_ui_backup.py"..
# Successfully converted "my_ui.py"
Now you may use the file as you normally would, with Qt.py
The uic.loadUi
function of PyQt4 and PyQt5 as well as the QtUiTools.QUiLoader().load
function of PySide/PySide2 are mapped to a convenience function loadUi
.
import sys
from Qt import QtCompat
app = QtWidgets.QApplication(sys.argv)
ui = QtCompat.loadUi(uifile="my.ui")
ui.show()
app.exec_()
For PyQt
bindings it uses their native implementation, whereas for PySide
bindings it uses our custom implementation borrowed from the qtpy project.
loadUi
has two arguments as opposed to the multiple that PyQt ships with. See here for details - in a nutshell, those arguments differ between PyQt and PySide in incompatible ways.
The second argument is baseinstance
which allows a ui to be dynamically loaded onto an existing QWidget instance.
QtCompat.loadUi(uifile="my.ui", baseinstance=QtWidgets.QWidget)
uifile
is the string path to the ui file to load.
If baseinstance
is None
, the a new instance of the top-level
widget will be created. Otherwise, the user interface is created within
the given baseinstance
. In this case baseinstance
must be an
instance of the top-level widget class in the UI file to load, or a
subclass thereof. In other words, if you've created a QMainWindow
interface in the designer, baseinstance
must be a QMainWindow
or a subclass thereof, too. You cannot load a QMainWindow
UI file
with a plain QWidget
as baseinstance
.
loadUi
returns baseinstance
, if baseinstance
is provided.
Otherwise it will return the newly created instance of the user interface.
If you're using PyQt4, sip
attempts to set its API to version 2 for the following:
QString
QVariant
QDate
QDateTime
QTextStream
QTime
QUrl
The PyQt and PySide bindings are similar, but not identical. Where there is ambiguity, there must to be a clear direction on which path to take.
Governing API
The official Qt 5 documentation is always right. Where the documentation lacks answers, PySide2 is right.
For example.
# PyQt5 adheres to PySide2 signals and slots
PyQt5.Signal = PyQt5.pyqtSignal
PyQt5.Slot = PyQt5.pyqtSlot
# PySide2 adheres to the official documentation
PySide2.QtCore.QStringListModel = PySide2.QtGui.QStringListModel
Caveats
There are cases where Qt.py is not handling incompatibility issues. Please see CAVEATS.md
for more information.
Send us a pull-request with known problems here!
Send us a pull-request with your studio here.
Presented at Siggraph 2016, BOF!
Send us a pull-request with your project here.
Comparison matrix.
Project | Audience | Reference binding | License | PEP8 | Standalone | PyPI | Co-existence |
---|---|---|---|---|---|---|---|
Qt.py | Film | PySide2 | MIT | X | X | X | X |
jupyter | Scientific | N/A | N/A | X | |||
QtPy | Scientific | N/A | MIT | X | X | ||
pyqode.qt | Scientific | PyQt5 | MIT | X | X | ||
QtExt | Film | N/A | N/A | X | |||
python_qt_binding | Robotics | N/A | BSD | X | X | X | X |
Also worth mentioning, pyqt4topyqt5; a good starting point for transitioning to Qt.py.
Send us a pull-request with your project here.
Tests are performed on each aspect of the shim.
Each of these are run under..
..once for each binding or under a specific binding only.
Each test is run within it's own isolated process, so as to allow an import
to occur independently from other tests. Process isolation is handled via nosepipe.
Tests that are written at module level are run four times - once per binding - whereas tests written under a specific if-statement are run only for this particular binding.
if binding("PyQt4"):
def test_something_related_to_pyqt4():
pass
Code convention
Below are some of the conventions that used throughout the Qt.py module and tests.
Running tests
Due to the nature of multiple bindings and multiple interpreter support, setting up a development environment in which to properly test your contraptions can be challenging. So here is a guide for how to do just that using Docker.
With Docker setup, here's what you do. Please note this will pull down a ~1 GB image.
cd Qt.py
# Run nosetests (Linux/OSX)
docker run --rm -v $(pwd):/Qt.py -e PYTHON=2.7 fredrikaverpil/qt.py:2018
docker run --rm -v $(pwd):/Qt.py -e PYTHON=3.4 fredrikaverpil/qt.py:2018
docker run --rm -v $(pwd):/Qt.py -e PYTHON=3.5 fredrikaverpil/qt.py:2018
docker run --rm -v $(pwd):/Qt.py -e PYTHON=3.6 fredrikaverpil/qt.py:2018
# Run nosetests (Windows)
docker run --rm -v %CD%:/Qt.py -e PYTHON=2.7 fredrikaverpil/qt.py:2018
docker run --rm -v %CD%:/Qt.py -e PYTHON=3.4 fredrikaverpil/qt.py:2018
docker run --rm -v %CD%:/Qt.py -e PYTHON=3.5 fredrikaverpil/qt.py:2018
docker run --rm -v %CD%:/Qt.py -e PYTHON=3.6 fredrikaverpil/qt.py:2018
# Doctest: test_caveats.test_1_qtgui_qabstractitemmodel_createindex ... ok
# Doctest: test_caveats.test_2_qtgui_qabstractitemmodel_createindex ... ok
# Doctest: test_caveats.test_3_qtcore_qitemselection ... ok
# ...
#
# ----------------------------------------------------------------------
# Ran 21 tests in 7.799s
#
# OK
Now both you and Github Actions are operating on the same assumptions which means that when the tests pass on your machine, they pass on Github Actions. And everybody wins!
For details on the Docker image for testing, see DOCKER.md
.
See CONTRIBUTING.md
for more of the good stuff.
Upload to PyPI
To make a new release onto PyPI, you'll need to be mottosso and type this.
cd Qt.py
python .\setup.py sdist bdist_wheel
python -m twine upload .\dist\*
Replace | With | Notes |
---|---|---|
QFont().setWeight(...) |
QtCompat.QFont.setWeight(font, ...) |
|
QFont().setWeight(QFont().Bold) |
QFont().setWeight(QFont.Bold) |
Instance of class doesn't have the enums, apparently |
QEvent().Resize |
QEvent.Resize |
Instance of class doesn't have the enums, seems to apply overall |
QtCore.Qt.MidButton |
QtCompat.Qt.MidButton |
|
QLabel.setPixmap(str) |
QLabel.setPixmap(QPixmap()) |
Can't take a string anymore (tested in Maya 2025.0) |
QModelIndex.child |
QModel.index |
This one is apparently from Qt 4 and should not have been in Qt.py to begin with |
Submit your known issues here! |
Many members were removed from Qt.py due to no longer existing in PySide 6.
If you find where they went, or think some were removed in error, please submit a pull-request!
"QtCore": [
"QAbstractState",
"QAbstractTransition",
"QEventTransition",
"QFinalState",
"QSignalTransition",
"QTextCodec",
"QTextDecoder",
"QTextEncoder",
"QtCriticalMsg",
"QtDebugMsg",
"QtFatalMsg",
"QtSystemMsg",
"QtWarningMsg",
"qChecksum",
"QPictureIO",
],
"QtMultimedia": [
"QAbstractVideoBuffer",
"QAbstractVideoSurface",
"QAudio",
"QAudioDeviceInfo",
"QAudioFormat",
"QAudioInput",
"QAudioOutput",
"QVideoFrame",
"QVideoSurfaceFormat"
],
"QtNetwork": [
"QNetworkConfiguration",
"QNetworkConfigurationManager",
"QNetworkSession",
],
"QtOpenGL": [
"QGL",
"QGLContext",
"QGLFormat",
"QGLWidget"
],
"QtSql": [
"QSql",
"QSqlDatabase",
"QSqlDriver",
"QSqlDriverCreatorBase",
"QSqlError",
"QSqlField",
"QSqlIndex",
"QSqlQuery",
"QSqlQueryModel",
"QSqlRecord",
"QSqlRelation",
"QSqlRelationalDelegate",
"QSqlRelationalTableModel",
"QSqlResult",
"QSqlTableModel"
],
"QtSvg": [
"QSvgGenerator",
"QSvgRenderer",
],
"QtWidgets": [
"QActionGroup",
"QDesktopWidget",
"QDirModel",
"QKeyEventTransition",
"QMouseEventTransition",
"QUndoCommand",
"QUndoGroup",
"QUndoStack",
],
"QtX11Extras": [
"QX11Info"
],
"QtXml": [
"QXmlAttributes",
"QXmlContentHandler",
"QXmlDTDHandler",
"QXmlDeclHandler",
"QXmlDefaultHandler",
"QXmlEntityResolver",
"QXmlErrorHandler",
"QXmlInputSource",
"QXmlLexicalHandler",
"QXmlLocator",
"QXmlNamespaceSupport",
"QXmlParseException",
"QXmlReader",
"QXmlSimpleReader"
],
"QtXmlPatterns": [
"QAbstractMessageHandler",
"QAbstractUriResolver",
"QAbstractXmlNodeModel",
"QAbstractXmlReceiver",
"QSourceLocation",
"QXmlFormatter",
"QXmlItem",
"QXmlName",
"QXmlNamePool",
"QXmlNodeModelIndex",
"QXmlQuery",
"QXmlResultItems",
"QXmlSchema",
"QXmlSchemaValidator",
"QXmlSerializer"
]
An overall change is that instances of classes, like QFont()
no longer provides access to static members, such as QFont.Bold
. So things like:
font = QFont()
font.setWeight(font.Bold)
Must be replaced with:
font = QFont()
font.setWeight(QFont.Bold)
Or:
font.setWeight(type(font).Bold)
Tedious and seemingly unnecessary.. But there you have it!
Qt.py 1.4.0, released in May 2024, added support for Qt 6 whilst preserving compatibility with Qt 4 and 5. That means that in most cases, code you've already written for Qt 4 or 5 will now continue to work with Qt 6, such as Maya 2025.
However, some changes between 5 and 6 require up-front work by you the developer to make your codebase run on Qt 6 whilst continuing to run on Qt 4 and 5.
The above is what we know, please do submit issues and pull-request with what else you find!
See also
The official PySide2 to PySide6 transition guide, which is especially helpful since Qt.py is modeled after PySide2.