mpaepper / content-chatbot

Build a chatbot or Q&A bot of your website's content
https://www.paepper.com/blog/posts/build-q-and-a-bot-of-your-website-using-langchain/
522 stars 56 forks source link
deep-learning llm machine-learning

This repo reached the front page of hacker news on March 22nd 2023, see the discussion here.

Your website content -> chatbot / Q&A agent

Turn your website content into a question answering bot which can cite your document sources.

Alternatively, use it in an interactive chatbot style fashion.

All this can be achieved with a tool called langchain which in turn uses the OpenAI API.

This simple repository showcases how to apply it on your own website content.

To do so, there are three scripts:

To install the dependencies, simply run pip install -r requirements.txt.

Create your embeddings

overview of the embedding process: each blog post is split into N documents and each document yields a vector representation.

This is the most important step and you will need to obtain an OpenAI API key to use it.

Once you have the $api_key, you can run export OPENAI_API_KEY='$api_key' in your terminal.

Then simply run python create_embeddings.py --sitemap https://path/to/your/sitemap.xml --filter https://path/to/your/blog/posts.

This will create your embeddings in a file called faiss_store.pkl. You need to point your website's sitemap.xml to the script and you can filter for URL's to start with filter. If you want to include all pages of your site, you can just set --filter https://.

For more details about this, please check this blog post.

Answering a question while getting the answer source documents

overview of the Q&A process: first we find the closest matches of our documents from the FAISS store and then we ask the question to the GPT3 API.

With the embeddings set up, ask a question like this: python ask_question.py "How to detect objects in images?"

Answer:

Object detection in images can be done using algorithms such as R-CNN, Fast R-CNN, and data augmentation techniques such as shifting, rotations, elastic deformations, and gray value variations.

Sources:

https://www.paepper.com/blog/posts/deep-learning-on-medical-images-with-u-net/
https://www.paepper.com/blog/posts/end-to-end-object-detection-with-transformers/

Starting a chatbot on your content

With the embeddings set up, start a chatbot like this: python start_chat_app.py. Then when it's running, ask your questions and follow-ups.

Zendesk Content Embedding

This repository includes an enhancement to the LangChain chatbot project, introducing the create_embeddings for Zendesk feature. This functionality utilizes the Zendesk API to retrieve website content and construct a Faiss knowledge base for improved chatbot responses.

How it Works

The create_embeddings script performs the following steps:

  1. Zendesk API Integration: Retrieves articles using the Zendesk API.
  2. Text Cleaning: Parses HTML content, extracting and cleaning text for embedding.
  3. Text Splitting: Breaks down the content into smaller chunks for efficient embedding processing.
  4. Embedding Creation: Utilizes OpenAI Embeddings to create embeddings for the text chunks.
  5. Faiss Knowledge Base Construction: Constructs a Faiss store with the generated embeddings, facilitating efficient similarity search.

Usage

Running the Script

Execute the Script: Run the create_embeddings.py script to generate the Faiss store.

Example:


    python create_embeddings.py -m zendesk -z "https://your.zendesk.api/"   #replace the link