mrahtz / sanger-machine-learning-workshop

Code for machine learning workshop given to Sanger Systems group
39 stars 34 forks source link

Sanger Anomaly Detection Workshop Code

This repository contains code used for the unsupervised learning section of the machine learning workshop given to the Systems group at Sanger.

The idea is based on Chapter 4, More Complex, Adaptive Models from Practical Machine Learning by Ted Dunning and Ellen Friedman.

Update: Majid al-Dosari (in the comments at http://amid.fish/anomaly-detection-with-k-means-clustering) and Eamonn Keogh point out that there may be issues with the approach described here for the reasons outlined in Clustering of Time Series Subsequences is Meaningless. This material still serves as an introduction to unsupervised learning and clustering, but beware in using it for anomaly detection in practice.

Contents

Requirements

Python is required, along with the following modules:

IPython Notebook dependencies are also required, if running the notebook.

If you're on Ubuntu:

$ sudo apt-get install ipython-notebook python-numpy python-matplotlib python-sklearn

Or on any system with pip:

$ pip install ipython[notebook] numpy matplotlib scikit-learn