mrinal054 / teethSeg_sr2f2u-net

MIT License
17 stars 2 forks source link

S-R2F2U-Net: A single-stage model for teeth segmentation

This implementation is leveraged from Yingkai Sha’s repository. Base models for recurrent, residual and attention are taken from the above mentioned repository.

The original paper can be found here.

Install the following packages -

pip install keras-unet-collection
pip install jenti

To install in Colab -

!pip install --target='/content/drive/MyDrive/library' keras-unet-collection
!pip install --target='/content/drive/MyDrive/library' jenti

You can set your own target location.

During the test phase, the package jenti is used to create patches. More details of it can be found here.

Implementation details

Class DataGenerator

[Note: An augmentation-enabled DataGenerator is also available upon request. Currently, it supports rotation, flip and shift. To get it, email at mdhar@uwm.edu with the subject line 'Requesting for augmentation-enabled DataGenerator'.]

This class is used in both Colab_hybrid_unet_2d.ipynb and Colab_hybrid_unet_2d_3d.ipynb. It loads data batch-wise from a given directory.

Loading the entire training and validation dataset is memory expensive for Colab. Instead, a data loader class called DataGenerator is implemented that loads images on-the-fly. In other words, it takes a list of image names and the directory where the images are situated. Then it loads images batch-wise while training the model.

Reference: Click here

Here is an example of how to use it -

list_IDs_train = os.listdir(img_dir_train) # list of training image names 
list_IDs_val = os.listdir(img_dir_val) # list of validation image names

# Call DataGenerator
train_gen = DataGenerator(list_IDs=list_IDs_train,
                          dir_image=img_dir_train, # directory of images
                          dir_mask=mask_dir_train, # directory of masks or ground truth
                          n_channels_image=3,
                          n_channels_mask=1,
                          dim=(512,512),
                          batch_size=batch_size,
                          shuffle=True)

val_gen = DataGenerator(list_IDs=list_IDs_val,
                          dir_image=img_dir_val,
                          dir_mask=mask_dir_val,
                          n_channels_image=3,
                          n_channels_mask=1,
                          dim=(512,512),
                          batch_size=batch_size,
                          shuffle=True)

Colab_hybrid_unet_2d.ipynb

It can create models from any combination of following four parameters -

Models Residual Recurrent1 Recurrent2 Filter doubliing Attention
Attention U-Net
R2U-Net
S-R2U-Net
S-R2F2U-Net
S-R2F2-Attn-U-Net

Following is a example of how to use Colab_hybrid_unet_2d.ipynb.

# Hyper-parameters
IMG_HEIGHT = 512 
IMG_WIDTH  = 512 
IMG_CHANNELS = 3 
NUM_LABELS = 2  #Binary
input_shape = (IMG_HEIGHT,IMG_WIDTH,IMG_CHANNELS)
batch_size = 2
FILTER_NUM = [32, 64, 128, 256, 512]
STACK_NUM_DOWN = 2
STACK_NUM_UP = 2
DILATION_RATE = 1
FILTER_DOUBLE = True
RECUR_STATUS = (False, True)
RECUR_NUM = 2
IS_RESIDUAL = True
IS_ATTENTION = True
ATTENTION_ACTIVATION = 'ReLU'
ATTENTION = 'add'
ACTIVATION = 'ReLU'
OUTPUT_ACTIVATION = 'Softmax'
BATCH_NORM = True
POOL = False
UNPOOL = False
RETRAIN = False

# Current version works for "stack_num_down = stack_num_up" only
model = hybrid_unet_2d(input_shape, filter_num=FILTER_NUM, 
                       n_labels=NUM_LABELS, 
                       stack_num_down=STACK_NUM_DOWN, stack_num_up=STACK_NUM_UP, 
                       dilation_rate=DILATION_RATE,
                       filter_double=FILTER_DOUBLE,
                       recur_status=RECUR_STATUS, recur_num=RECUR_NUM,
                       is_residual=IS_RESIDUAL,
                       is_attention=IS_ATTENTION,
                       atten_activation=ATTENTION_ACTIVATION, attention=ATTENTION,
                       activation=ACTIVATION, output_activation=OUTPUT_ACTIVATION, 
                       batch_norm=BATCH_NORM, pool=POOL, unpool=UNPOOL, name='hybrid_unet')

Colab_hybrid_unet_2d_3d.ipynb

It can work for both 2d and 3d. A new parameter called CONV is used to define 2d or 3d model.

Colab_hybrid_layer_output.ipynb

It demonstrates layers' outputs during the decoding process. For better visualization, all the feature maps are resize to the original image size. It can generate layer outputs in two ways -

Here is an example of creating model using layer names -


# Load an existing model
existing_model = load_model('/content/drive/MyDrive/panoramicDentalSegmentation/checkpoints/hybrid_unet_2d/recur_F_T_residual_filter_double/2022-02-24_06-24-34/cp-0025.ckpt', compile=False)```

# Get the desired layer names from the model summary
existing_model.summary()

# Layer names
input_layer_name = 'hybrid_unet_input'
output_layer_name1 = 'hybrid_unet_up1_add1'
output_layer_name2 = 'hybrid_unet_up2_add1'
output_layer_name3 = 'hybrid_unet_up3_add1'
output_layer_name4 = 'hybrid_unet_up4_add1'
output_layer_name5 = 'hybrid_unet_output_activation'

# Method 1: Previous-model input is taken as the input
model1 = Model(inputs=existing_model.input, outputs=existing_model.get_layer(output_layer_name1).output)
model2 = Model(inputs=existing_model.input, outputs=existing_model.get_layer(output_layer_name2).output)
model3 = Model(inputs=existing_model.input, outputs=existing_model.get_layer(output_layer_name3).output)
model4 = Model(inputs=existing_model.input, outputs=existing_model.get_layer(output_layer_name4).output)
model5 = Model(inputs=existing_model.input, outputs=existing_model.get_layer(output_layer_name5).output)

models = [model1, model2, model3, model4, model5]

Here is an example of how to create a model from layer indices -

layers = {i: v for i, v in enumerate(existing_model.layers)}

# Method 1
model = Model(inputs=existing_model.input, outputs=existing_model.get_layer(index=100).output)

Performance analysis table

Model Acc Spec. Pre. Recall Dice Param (M)
Attention U-Net 97.06 98.60 94.28 91.22 92.55 43.94
U2 NET 96.82 98.84 95.12 89.01 91.78 60.11
R2U-NET (up to 4 levels) 97.27 98.66 94.61 92.02 93.11 108.61
ResUNET-a 97.10 98.50 93.95 91.77 92.66 4.71
U-Net 96.04 97.68 89.89 90.18 89.33 31.04
BiseNet 95.05 95.98 85.53 92.48 87.8 12.2
DenseASPP 95.5 97.76 90.09 86.88 88.13 46.16
SegNet 96.38 98.32 92.26 89.05 90.15 29.44
BASNet 96.77 98.64 94.56 90.11 92.12 87.06
TSASNet 96.94 97.81 94.77 93.77 92.72 78.27
MSLPNet 97.30 98.45 93.35 92.97 93.01 -
LTPEDN 94.32 - - - 92.42 -
S-R2U-Net 97.22 98.52 94.06 92.33 93.01 77.17
S-R2F2U-Net 97.31 98.55 94.27 92.61 93.26 59.12
S-R2F2-Attn-U-Net 97.23 98.55 94.19 92.16 93.00 59.25

Reference:

Sha, Y. Keras-unet-collection. GitHub repository (2021) doi:10.5281/zenodo.5449801.