"Arguments over style are pointless. There should be a style guide, and you should follow it"
Rebecca Murphey
"Part of being a good steward to a successful project is realizing that writing code for yourself is a Bad Idea™. If thousands of people are using your code, then write your code for maximum clarity, not your personal preference of how to get clever within the spec."
Idan Gazit
The following should be considered 1) incomplete, and 2) REQUIRED READING. I don't always agree with the style written by the authors below, but one thing is certain: They are consistent. Furthermore, these are authorities on the language.
Projects should always attempt to include some generic means by which source can be linted, tested and compressed in preparation for production use. For this task, grunt by Ben Alman is second to none and has officially replaced the "kits/" directory of this repo.
Projects must include some form of unit, reference, implementation or functional testing. Use case demos DO NOT QUALIFY as "tests". The following is a list of test frameworks, none of which are endorsed more than the other.
The following sections outline a reasonable style guide for modern JavaScript development and are not meant to be prescriptive. The most important take-away is the law of code style consistency. Whatever you choose as the style for your project should be considered law. Link to this document as a statement of your project's commitment to code style consistency, readability and maintainability.
A. Parens, Braces, Linebreaks
// if/else/for/while/try always have spaces, braces and span multiple lines
// this encourages readability
// 2.A.1.1
// Examples of really cramped syntax
if(condition) doSomething();
while(condition) iterating++;
for(var i=0;i<100;i++) someIterativeFn();
// 2.A.1.1
// Use whitespace to promote readability
if ( condition ) {
// statements
}
while ( condition ) {
// statements
}
for ( var i = 0; i < 100; i++ ) {
// statements
}
// Even better:
var i,
length = 100;
for ( i = 0; i < length; i++ ) {
// statements
}
// Or...
var i = 0,
length = 100;
for ( ; i < length; i++ ) {
// statements
}
var prop;
for ( prop in object ) {
// statements
}
if ( true ) {
// statements
} else {
// statements
}
B. Assignments, Declarations, Functions ( Named, Expression, Constructor )
// 2.B.1.1
// Variables
var foo = "bar",
num = 1,
undef;
// Literal notations:
var array = [],
object = {};
// 2.B.1.2
// Using only one `var` per scope (function) promotes readability
// and keeps your declaration list free of clutter (also saves a few keystrokes)
// Bad
var foo = "";
var bar = "";
var qux;
// Good
var foo = "",
bar = "",
quux;
// or..
var // Comment on these
foo = "",
bar = "",
quux;
// 2.B.1.3
// var statements should always be in the beginning of their respective scope (function).
// Same goes for const and let from ECMAScript 6.
// Bad
function foo() {
// some statements here
var bar = "",
qux;
}
// Good
function foo() {
var bar = "",
qux;
// all statements after the variables declarations.
}
// 2.B.2.1
// Named Function Declaration
function foo( arg1, argN ) {
}
// Usage
foo( arg1, argN );
// 2.B.2.2
// Named Function Declaration
function square( number ) {
return number * number;
}
// Usage
square( 10 );
// Really contrived continuation passing style
function square( number, callback ) {
callback( number * number );
}
square( 10, function( square ) {
// callback statements
});
// 2.B.2.3
// Function Expression
var square = function( number ) {
// Return something valuable and relevant
return number * number;
};
// Function Expression with Identifier
// This preferred form has the added value of being
// able to call itself and have an identity in stack traces:
var factorial = function factorial( number ) {
if ( number < 2 ) {
return 1;
}
return number * factorial( number-1 );
};
// 2.B.2.4
// Constructor Declaration
function FooBar( options ) {
this.options = options;
}
// Usage
var fooBar = new FooBar({ a: "alpha" });
fooBar.options;
// { a: "alpha" }
C. Exceptions, Slight Deviations
// 2.C.1.1
// Functions with callbacks
foo(function() {
// Note there is no extra space between the first paren
// of the executing function call and the word "function"
});
// Function accepting an array, no space
foo([ "alpha", "beta" ]);
// 2.C.1.2
// Function accepting an object, no space
foo({
a: "alpha",
b: "beta"
});
// Single argument string literal, no space
foo("bar");
// Inner grouping parens, no space
if ( !("foo" in obj) ) {
}
D. Consistency Always Wins
In sections 2.A-2.C, the whitespace rules are set forth as a recommendation with a simpler, higher purpose: consistency. It's important to note that formatting preferences, such as "inner whitespace" should be considered optional, but only one style should exist across the entire source of your project.
// 2.D.1.1
if (condition) {
// statements
}
while (condition) {
// statements
}
for (var i = 0; i < 100; i++) {
// statements
}
if (true) {
// statements
} else {
// statements
}
E. Quotes
Whether you prefer single or double shouldn't matter, there is no difference in how JavaScript parses them. What ABSOLUTELY MUST be enforced is consistency. Never mix quotes in the same project. Pick one style and stick with it.
F. End of Lines and Empty Lines
Whitespace can ruin diffs and make changesets impossible to read. Consider incorporating a pre-commit hook that removes end-of-line whitespace and blanks spaces on empty lines automatically.
Type Checking (Courtesy jQuery Core Style Guidelines)
A. Actual Types
String:
typeof variable === "string"
Number:
typeof variable === "number"
Boolean:
typeof variable === "boolean"
Object:
typeof variable === "object"
Array:
Array.isArray( arrayLikeObject )
(wherever possible)
Node:
elem.nodeType === 1
null:
variable === null
null or undefined:
variable == null
undefined:
Global Variables:
typeof variable === "undefined"
Local Variables:
variable === undefined
Properties:
object.prop === undefined
object.hasOwnProperty( prop )
"prop" in object
B. Coerced Types
Consider the implications of the following...
Given this HTML:
<input type="text" id="foo-input" value="1">
// 3.B.1.1
// `foo` has been declared with the value `0` and its type is `number`
var foo = 0;
// typeof foo;
// "number"
...
// Somewhere later in your code, you need to update `foo`
// with a new value derived from an input element
foo = document.getElementById("foo-input").value;
// If you were to test `typeof foo` now, the result would be `string`
// This means that if you had logic that tested `foo` like:
if ( foo === 1 ) {
importantTask();
}
// `importantTask()` would never be evaluated, even though `foo` has a value of "1"
// 3.B.1.2
// You can preempt issues by using smart coercion with unary + or - operators:
foo = +document.getElementById("foo-input").value;
// ^ unary + operator will convert its right side operand to a number
// typeof foo;
// "number"
if ( foo === 1 ) {
importantTask();
}
// `importantTask()` will be called
Here are some common cases along with coercions:
// 3.B.2.1
var number = 1,
string = "1",
bool = false;
number;
// 1
number + "";
// "1"
string;
// "1"
+string;
// 1
+string++;
// 1
string;
// 2
bool;
// false
+bool;
// 0
bool + "";
// "false"
// 3.B.2.2
var number = 1,
string = "1",
bool = true;
string === number;
// false
string === number + "";
// true
+string === number;
// true
bool === number;
// false
+bool === number;
// true
bool === string;
// false
bool === !!string;
// true
// 3.B.2.3
var array = [ "a", "b", "c" ];
!!~array.indexOf("a");
// true
!!~array.indexOf("b");
// true
!!~array.indexOf("c");
// true
!!~array.indexOf("d");
// false
// Note that the above should be considered "unnecessarily clever"
// Prefer the obvious approach of comparing the returned value of
// indexOf, like:
if ( array.indexOf( "a" ) >= 0 ) {
// ...
}
// 3.B.2.4
var num = 2.5;
parseInt( num, 10 );
// is the same as...
~~num;
num >> 0;
num >>> 0;
// All result in 2
// Keep in mind however, that negative numbers will be treated differently...
var neg = -2.5;
parseInt( neg, 10 );
// is the same as...
~~neg;
neg >> 0;
// All result in -2
// However...
neg >>> 0;
// Will result in 4294967294
// 4.1.1
// When only evaluating that an array has length,
// instead of this:
if ( array.length > 0 ) ...
// ...evaluate truthiness, like this:
if ( array.length ) ...
// 4.1.2
// When only evaluating that an array is empty,
// instead of this:
if ( array.length === 0 ) ...
// ...evaluate truthiness, like this:
if ( !array.length ) ...
// 4.1.3
// When only evaluating that a string is not empty,
// instead of this:
if ( string !== "" ) ...
// ...evaluate truthiness, like this:
if ( string ) ...
// 4.1.4
// When only evaluating that a string _is_ empty,
// instead of this:
if ( string === "" ) ...
// ...evaluate falsy-ness, like this:
if ( !string ) ...
// 4.1.5
// When only evaluating that a reference is true,
// instead of this:
if ( foo === true ) ...
// ...evaluate like you mean it, take advantage of built in capabilities:
if ( foo ) ...
// 4.1.6
// When evaluating that a reference is false,
// instead of this:
if ( foo === false ) ...
// ...use negation to coerce a true evaluation
if ( !foo ) ...
// ...Be careful, this will also match: 0, "", null, undefined, NaN
// If you _MUST_ test for a boolean false, then use
if ( foo === false ) ...
// 4.1.7
// When only evaluating a ref that might be null or undefined, but NOT false, "" or 0,
// instead of this:
if ( foo === null || foo === undefined ) ...
// ...take advantage of == type coercion, like this:
if ( foo == null ) ...
// Remember, using == will match a `null` to BOTH `null` and `undefined`
// but not `false`, "" or 0
null == undefined
ALWAYS evaluate for the best, most accurate result - the above is a guideline, not a dogma.
// 4.2.1
// Type coercion and evaluation notes
// Prefer `===` over `==` (unless the case requires loose type evaluation)
// === does not coerce type, which means that:
"1" === 1;
// false
// == does coerce type, which means that:
"1" == 1;
// true
// 4.2.2
// Booleans, Truthies & Falsies
// Booleans:
true, false
// Truthy:
"foo", 1
// Falsy:
"", 0, null, undefined, NaN, void 0
// 5.1.1
// A Practical Module
(function( global ) {
var Module = (function() {
var data = "secret";
return {
// This is some boolean property
bool: true,
// Some string value
string: "a string",
// An array property
array: [ 1, 2, 3, 4 ],
// An object property
object: {
lang: "en-Us"
},
getData: function() {
// get the current value of `data`
return data;
},
setData: function( value ) {
// set the value of `data` and return it
return ( data = value );
}
};
})();
// Other things might happen here
// expose our module to the global object
global.Module = Module;
})( this );
// 5.2.1
// A Practical Constructor
(function( global ) {
function Ctor( foo ) {
this.foo = foo;
return this;
}
Ctor.prototype.getFoo = function() {
return this.foo;
};
Ctor.prototype.setFoo = function( val ) {
return ( this.foo = val );
};
// To call constructor's without `new`, you might do this:
var ctor = function( foo ) {
return new Ctor( foo );
};
// expose our constructor to the global object
global.ctor = ctor;
})( this );
A. You are not a human code compiler/compressor, so don't try to be one.
The following code is an example of egregious naming:
// 6.A.1.1
// Example of code with poor names
function q(s) {
return document.querySelectorAll(s);
}
var i,a=[],els=q("#foo");
for(i=0;i<els.length;i++){a.push(els[i]);}
Without a doubt, you've written code like this - hopefully that ends today.
Here's the same piece of logic, but with kinder, more thoughtful naming (and a readable structure):
// 6.A.2.1
// Example of code with improved names
function query( selector ) {
return document.querySelectorAll( selector );
}
var idx = 0,
elements = [],
matches = query("#foo"),
length = matches.length;
for ( ; idx < length; idx++ ) {
elements.push( matches[ idx ] );
}
A few additional naming pointers:
// 6.A.3.1
// Naming strings
`dog` is a string
// 6.A.3.2
// Naming arrays
`dogs` is an array of `dog` strings
// 6.A.3.3
// Naming functions, objects, instances, etc
camelCase; function and var declarations
// 6.A.3.4
// Naming constructors, prototypes, etc.
PascalCase; constructor function
// 6.A.3.5
// Naming regular expressions
rDesc = //;
// 6.A.3.6
// From the Google Closure Library Style Guide
functionNamesLikeThis;
variableNamesLikeThis;
ConstructorNamesLikeThis;
EnumNamesLikeThis;
methodNamesLikeThis;
SYMBOLIC_CONSTANTS_LIKE_THIS;
B. Faces of this
Beyond the generally well known use cases of call
and apply
, always prefer .bind( this )
or a functional equivalent, for creating BoundFunction
definitions for later invocation. Only resort to aliasing when no preferable option is available.
// 6.B.1
function Device( opts ) {
this.value = null;
// open an async stream,
// this will be called continuously
stream.read( opts.path, function( data ) {
// Update this instance's current value
// with the most recent value from the
// data stream
this.value = data;
}.bind(this) );
// Throttle the frequency of events emitted from
// this Device instance
setInterval(function() {
// Emit a throttled event
this.emit("event");
}.bind(this), opts.freq || 100 );
}
// Just pretend we've inherited EventEmitter ;)
When unavailable, functional equivalents to .bind
exist in many modern JavaScript libraries.
// 6.B.2
// eg. lodash/underscore, _.bind()
function Device( opts ) {
this.value = null;
stream.read( opts.path, _.bind(function( data ) {
this.value = data;
}, this) );
setInterval(_.bind(function() {
this.emit("event");
}, this), opts.freq || 100 );
}
// eg. jQuery.proxy
function Device( opts ) {
this.value = null;
stream.read( opts.path, jQuery.proxy(function( data ) {
this.value = data;
}, this) );
setInterval( jQuery.proxy(function() {
this.emit("event");
}, this), opts.freq || 100 );
}
// eg. dojo.hitch
function Device( opts ) {
this.value = null;
stream.read( opts.path, dojo.hitch( this, function( data ) {
this.value = data;
}) );
setInterval( dojo.hitch( this, function() {
this.emit("event");
}), opts.freq || 100 );
}
As a last resort, create an alias to this
using self
as an Identifier. This is extremely bug prone and should be avoided whenever possible.
// 6.B.3
function Device( opts ) {
var self = this;
this.value = null;
stream.read( opts.path, function( data ) {
self.value = data;
});
setInterval(function() {
self.emit("event");
}, opts.freq || 100 );
}
C. Use thisArg
Several prototype methods of ES 5.1 built-ins come with a special thisArg
signature, which should be used whenever possible
// 6.C.1
var obj;
obj = { f: "foo", b: "bar", q: "qux" };
Object.keys( obj ).forEach(function( key ) {
// |this| now refers to `obj`
console.log( this[ key ] );
}, obj ); // <-- the last arg is `thisArg`
// Prints...
// "foo"
// "bar"
// "qux"
thisArg
can be used with Array.prototype.every
, Array.prototype.forEach
, Array.prototype.some
, Array.prototype.map
, Array.prototype.filter
This section will serve to illustrate ideas and concepts that should not be considered dogma, but instead exists to encourage questioning practices in an attempt to find better ways to do common JavaScript programming tasks.
A. Using switch
should be avoided, modern method tracing will blacklist functions with switch statements
There seems to be drastic improvements to the execution of switch
statements in latest releases of Firefox and Chrome.
http://jsperf.com/switch-vs-object-literal-vs-module
Notable improvements can be witnesses here as well: https://github.com/rwldrn/idiomatic.js/issues/13
// 7.A.1.1
// An example switch statement
switch( foo ) {
case "alpha":
alpha();
break;
case "beta":
beta();
break;
default:
// something to default to
break;
}
// 7.A.1.2
// A alternate approach that supports composability and reusability is to
// use an object to store "cases" and a function to delegate:
var cases, delegator;
// Example returns for illustration only.
cases = {
alpha: function() {
// statements
// a return
return [ "Alpha", arguments.length ];
},
beta: function() {
// statements
// a return
return [ "Beta", arguments.length ];
},
_default: function() {
// statements
// a return
return [ "Default", arguments.length ];
}
};
delegator = function() {
var args, key, delegate;
// Transform arguments list into an array
args = [].slice.call( arguments );
// shift the case key from the arguments
key = args.shift();
// Assign the default case handler
delegate = cases._default;
// Derive the method to delegate operation to
if ( cases.hasOwnProperty( key ) ) {
delegate = cases[ key ];
}
// The scope arg could be set to something specific,
// in this case, |null| will suffice
return delegate.apply( null, args );
};
// 7.A.1.3
// Put the API in 7.A.1.2 to work:
delegator( "alpha", 1, 2, 3, 4, 5 );
// [ "Alpha", 5 ]
// Of course, the `case` key argument could easily be based
// on some other arbitrary condition.
var caseKey, someUserInput;
// Possibly some kind of form input?
someUserInput = 9;
if ( someUserInput > 10 ) {
caseKey = "alpha";
} else {
caseKey = "beta";
}
// or...
caseKey = someUserInput > 10 ? "alpha" : "beta";
// And then...
delegator( caseKey, someUserInput );
// [ "Beta", 1 ]
// And of course...
delegator();
// [ "Default", 0 ]
B. Early returns promote code readability with negligible performance difference
// 7.B.1.1
// Bad:
function returnLate( foo ) {
var ret;
if ( foo ) {
ret = "foo";
} else {
ret = "quux";
}
return ret;
}
// Good:
function returnEarly( foo ) {
if ( foo ) {
return "foo";
}
return "quux";
}
The basic principle here is:
To reinforce this concept, please watch the following presentation:
Programs should be written in one language, whatever that language may be, as dictated by the maintainer or maintainers.
Any project that cites this document as its base style guide will not accept comma first code formatting, unless explicitly specified otherwise by that project's author.
Principles of Writing Consistent, Idiomatic JavaScript by Rick Waldron and Contributors is licensed under a Creative Commons Attribution 3.0 Unported License.
Based on a work at github.com/rwldrn/idiomatic.js.