This repository is implemented by Yuqing Zhu, Shuhao Fu, and Xizhou Zhu, when they are interns at MSRA.
Flow-Guided Feature Aggregation (FGFA) is initially described in an ICCV 2017 paper. It provides an accurate and end-to-end learning framework for video object detection. The proposed FGFA method, together with our previous work of Deep Feature Flow, powered the winning entry of ImageNet VID 2017. It is worth noting that:
Click image to watch our demo video
Example object instances with slow, medium and fast motions
This is an official implementation for Flow-Guided Feature Aggregation for Video Recognition (FGFA) based on MXNet. It is worth noticing that:
© Microsoft, 2017. Licensed under the MIT License.
If you find Flow-Guided Feature Aggregation useful in your research, please consider citing:
@inproceedings{zhu17fgfa,
Author = {Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, Yichen Wei},
Title = {Flow-Guided Feature Aggregation for Video Object Detection},
Conference = {ICCV},
Year = {2017}
}
@inproceedings{dai16rfcn,
Author = {Jifeng Dai, Yi Li, Kaiming He, Jian Sun},
Title = {{R-FCN}: Object Detection via Region-based Fully Convolutional Networks},
Conference = {NIPS},
Year = {2016}
}
training data | testing data | mAP(%) | mAP(%)(slow) | mAP(%)(medium) | mAP(%)(fast) | |
---|---|---|---|---|---|---|
Single-frame baseline(R-FCN, ResNet-v1-101) | ImageNet DET train + VID train | ImageNet VID validation | 74.1 | 83.6 | 71.6 | 51.2 |
FGFA(R-FCN, ResNet-v1-101, FlowNet) | ImageNet DET train + VID train | ImageNet VID validation | 77.1 | 85.9 | 75.7 | 56.1 |
FGFA + SeqNMS(R-FCN, ResNet-v1-101, FlowNet) | ImageNet DET train + VID train | ImageNet VID validation | 78.9 | 86.8 | 77.9 | 57.9 |
Detection accuracy of slow (motion IoU > 0.9), medium (0.7 ≤ motion IoU ≤ 0.9), and fast (motion IoU < 0.7) moving object instances.
Motion-specific evaluation code is available!
MXNet from the offical repository. We tested our code on MXNet@(v0.10.0). Due to the rapid development of MXNet, it is recommended to checkout this version if you encounter any issues. We may maintain this repository periodically if MXNet adds important feature in future release.
Python packages might missing: cython, opencv-python >= 3.2.0, easydict. If pip
is set up on your system, those packages should be able to be fetched and installed by running
pip install Cython
pip install opencv-python==3.2.0.6
pip install easydict==1.6
For Windows users, Visual Studio 2015 is needed to compile cython module.
Any NVIDIA GPUs with at least 8GB memory should be OK.
git clone https://github.com/msracver/Flow-Guided-Feature-Aggregation.git
For Windows users, run cmd .\init.bat
. For Linux user, run sh ./init.sh
. The scripts will build cython module automatically and create some folders.
Install MXNet:
3.1 Clone MXNet and checkout to MXNet@(v0.10.0) by
git clone --recursive https://github.com/apache/incubator-mxnet.git
cd incubator-mxnet
git checkout v0.10.0
git submodule update
3.2 Copy operators in $(FGFA_ROOT)/fgfa_rfcn/operator_cxx
to $(YOUR_MXNET_FOLDER)/src/operator/contrib
by
cp -r $(FGFA_ROOT)/fgfa_rfcn/operator_cxx/* $(MXNET_ROOT)/src/operator/contrib/
3.3 Compile MXNet
cd ${MXNET_ROOT}
make -j4
3.4 Install the MXNet Python binding by
Note: If you will actively switch between different versions of MXNet, please follow 3.5 instead of 3.4
cd python
sudo python setup.py install
3.5 For advanced users, you may put your Python packge into ./external/mxnet/$(YOUR_MXNET_PACKAGE)
, and modify MXNET_VERSION
in ./experiments/fgfa_rfcn/cfgs/*.yaml
to $(YOUR_MXNET_PACKAGE)
. Thus you can switch among different versions of MXNet quickly.
To run the demo with our trained model (on ImageNet DET + VID train), please download the model manually from OneDrive, and put it under folder model/
.
Make sure it looks like this:
./model/rfcn_fgfa_flownet_vid-0000.params
python ./fgfa_rfcn/demo.py
Please download ILSVRC2015 DET and ILSVRC2015 VID dataset, and make sure it looks like this:
./data/ILSVRC2015/
./data/ILSVRC2015/Annotations/DET
./data/ILSVRC2015/Annotations/VID
./data/ILSVRC2015/Data/DET
./data/ILSVRC2015/Data/VID
./data/ILSVRC2015/ImageSets
Please download ImageNet pre-trained ResNet-v1-101 model and Flying-Chairs pre-trained FlowNet model manually from OneDrive, and put it under folder ./model
. Make sure it looks like this:
./model/pretrained_model/resnet_v1_101-0000.params
./model/pretrained_model/flownet-0000.params
All of our experiment settings (GPU #, dataset, etc.) are kept in yaml config files at folder ./experiments/fgfa_rfcn/cfgs
.
Two config files have been provided so far, namely, frame baseline (R-FCN) and the proposed FGFA for ImageNet VID. We use 4 GPUs to train models on ImageNet VID.
To perform experiments, run the python script with the corresponding config file as input. For example, to train and test FGFA with R-FCN, use the following command
python experiments/fgfa_rfcn/fgfa_rfcn_end2end_train_test.py --cfg experiments/fgfa_rfcn/cfgs/resnet_v1_101_flownet_imagenet_vid_rfcn_end2end_ohem.yaml
A cache folder would be created automatically to save the model and the log under output/fgfa_rfcn/imagenet_vid/
.
Please find more details in config files and in our code.
Code has been tested under:
Q: I encounter segment fault
at the beginning.
A: A compatibility issue has been identified between MXNet and opencv-python 3.0+. We suggest that you always import cv2
first before import mxnet
in the entry script.
Q: I find the training speed becomes slower when training for a long time.
A: It has been identified that MXNet on Windows has this problem. So we recommend to run this program on Linux. You could also stop it and resume the training process to regain the training speed if you encounter this problem.
Q: Can you share your caffe implementation?
A: Due to several reasons (code is based on a old, internal Caffe, port to public Caffe needs extra work, time limit, etc.). We do not plan to release our Caffe code. Since a warping layer is easy to implement, anyone who wish to do it is welcome to make a pull request.