myb513 / DL-based-ABR-Heuristic-Algorithm-Design

<캡스톤디자인> heuristic ABR 기법 내 ai기법 기반 성능 향상 주제 연구를 위한 리포지토리입니다.
0 stars 0 forks source link

ABR 기법 내 Heuristic 기법의 딥러닝 기반 성능 향상

주제의 캡스톤디자인 연구 리포지토리 입니다.

MPC 시뮬레이션

1) Big Buck Bunny 영상의 딥러닝 적용 비교

1-1) 화질 선택 비교

1 2

1-1) 리버퍼링 구간 비교

3 4

2) Underwater 영상의 딥러닝 적용 비교

2-1) 화질 선택 비교

5 6

2-1) 리버퍼링 구간 비교

7 8

3) Red_bull_kluge 영상의 딥러닝 적용 비교

3-1) 화질 선택 비교

9 10

3-1) 리버퍼링 구간 비교

11 12

코드 객관성 이슈로 다른 코드로 실험이 재개중입니다.

Loss 줄이기 대작전

5종류 파일별 평균 loss, RMSE (0710 - 오전 11시)

Average Loss for norway_bus: 0.8200654978661434
Average RMSE for norway_bus: 2.8550689591740683

Average Loss for norway_car: 0.8632435977148513
Average RMSE for norway_car: 1.6125853899249403

Average Loss for norway_ferry: 1.050452275481075
Average RMSE for norway_ferry: 1.671742215196391

Average Loss for norway_metro: 0.9014781301841139
Average RMSE for norway_metro: 1.3037957097508026

Average Loss for norway_train: 0.7231793492766363
Average RMSE for norway_train: 1.8218095248378325

Average Loss for norway_tram: 1.0874163205236462
Average RMSE for norway_tram: 0.8635825068434021

5종류 파일별 평균 loss, RMSE (0710 - 오후 12시)

timestep 2배 늘리고, learning rate 0.005로 설정

Average Loss for norway_bus: 0.45112204260152317
Average RMSE for norway_bus: 2.4936502817843755

Average Loss for norway_car: 0.5429791019608577
Average RMSE for norway_car: 1.1029296274843128

Average Loss for norway_ferry: 0.586785692954436
Average RMSE for norway_ferry: 1.3564371347041644

Average Loss for norway_metro: 0.5291992735117674
Average RMSE for norway_metro: 1.0041247437768004

Average Loss for norway_train: 0.44004547343190226
Average RMSE for norway_train: 1.6507045486163885

Average Loss for norway_tram: 0.624087049692337
Average RMSE for norway_tram: 0.6825757067016001

5종류 파일별 평균 loss, RMSE (0711 - 오후 2시)

모델 층 구조 추가 32개짜리 레이어?

Average Loss for norway_bus: 0.41885597238560085
Average RMSE for norway_bus: 2.432128062731251

Average Loss for norway_car: 0.5383156654424965
Average RMSE for norway_car: 1.0910070509313299

Average Loss for norway_ferry: 0.5598084934987128
Average RMSE for norway_ferry: 1.3276279754051459

Average Loss for norway_metro: 0.4829714709892869
Average RMSE for norway_metro: 0.9668349026835052

Average Loss for norway_train: 0.4275669992147457
Average RMSE for norway_train: 1.6288726327126775

Average Loss for norway_tram: 0.6039361167931929
Average RMSE for norway_tram: 0.6506575575299729

5종류 파일별 평균 loss, RMSE (0711 - 오후 3시)

epoch 10-> 100 으로 변경

epoch 100으로 바로 갔더니 ,, 오버피팅 된듯. 10~ 50사이를 10 간격으로 모두 해보고 제일 나은거 ㄲ

Average Loss for norway_bus: 2.3307771787715508
Average RMSE for norway_bus: 2.339673771719343

Average Loss for norway_car: 3.6836642963656536
Average RMSE for norway_car: 1.1960164299810598

Average Loss for norway_ferry: 3.060195946507156
Average RMSE for norway_ferry: 1.4451066300335025

Average Loss for norway_metro: 3.2672178003937007
Average RMSE for norway_metro: 1.0813373015585048

Average Loss for norway_train: 2.5784553364141
Average RMSE for norway_train: 1.8624297616794598

Average Loss for norway_tram: 3.5196363804695596
Average RMSE for norway_tram: 0.6599491557924633

5종류 파일별, epoch 별, avg(RMSE) (0711 - 오후 3시)

가장 정확도가 높은 epoch 값을 추적하는 그래프를 그려보자

-> 그래프를 보면 10~20 epoch로 하면 될 것 같다는 생각을 함. why? 합리적으로 rmse 값이 전체적으로 낮은 부분이니깐!

서로다른 층 구조 모델 3개 비교 loss, RMSE (0711 - 오후 5시)

시각화 코드 에러 이슈로 콘솔출력 값 수기 입력

# 모델 1
Average Loss for norway_bus: 0.4277389136993367
Average RMSE for norway_bus: 2.483556167239904

# 모델 2
Average Loss for norway_bus: 0.423200525464895
Average RMSE for norway_bus: 2.3877440547929756

# 모델 3
Average Loss for norway_bus: 0.44199857407290005
Average RMSE for norway_bus: 2.3445965110316576

# 모델 1
Average Loss for norway_car: 0.5266553272182742
Average RMSE for norway_car: 1.1137567739190306

# 모델 2
Average Loss for norway_car: 0.5419865385629237
Average RMSE for norway_car: 1.065013561803757

# 모델 3
Average Loss for norway_car: 0.5278499145060778
Average RMSE for norway_car: 1.2076046218577345

# 모델 1
Average Loss for norway_ferry: 0.5660448386799544
Average RMSE for norway_ferry: 1.3476696091517664

# 모델 2
Average Loss for norway_ferry: 0.547693053074181
Average RMSE for norway_ferry: 1.3306689245935162

# 모델 3
Average Loss for norway_ferry: 0.541606237925589
Average RMSE for norway_ferry: 1.2782834034212676

# 모델 1
Average Loss for norway_metro: 0.4791893146932125
Average RMSE for norway_metro: 0.9578108050957672

# 모델 2
Average Loss for norway_metro: 0.4765708018094301
Average RMSE for norway_metro: 0.9282643189992317

# 모델 3
Average Loss for norway_metro: 0.4830556891858578
Average RMSE for norway_metro: 0.9699208809326457

# 모델 1
Average Loss for norway_train: 0.4292234616309759
Average RMSE for norway_train: 1.610844508434629

# 모델 2
Average Loss for norway_train: 0.43025303889243377
Average RMSE for norway_train: 1.6481098579220819

# 모델 3
Average Loss for norway_train: 0.41436857725715354
Average RMSE for norway_train: 1.610064776048801

# 모델 1
Average Loss for norway_tram: 0.590874460159934
Average RMSE for norway_tram: 0.6413066036774696

# 모델 2
Average Loss for norway_tram: 0.598417838885715
Average RMSE for norway_tram: 0.6486776374131601[Uploading norway_train_merge_result.txt…]()

# 모델 3
Average Loss for norway_tram: 0.5909878046784017
Average RMSE for norway_tram: 0.6345559510082625

5종류 파일별, epoch 별, avg(RMSE) (0712 - 오전 10시)

가장 정확도가 높은 epoch 값을 추적하는 그래프를 그려보자

같은 종류의 파일들을 병합하여 많은 양의 데이터를 학습시켜보자 (0712 - 오전 12시)

Average Loss for norway_bus: 0.48099879175424576
Average RMSE for norway_bus: 2.5172940979055785

Average Loss for norway_car: 0.3148403521627188
Average RMSE for norway_car: 1.376522023474511

Average Loss for norway_ferry: 0.1533771799877286
Average RMSE for norway_ferry: 1.5898911879670978

Average Loss for norway_metro: 0.4496259056031704
Average RMSE for norway_metro: 0.953003822698219

Average Loss for norway_train: 0.1367283184081316
Average RMSE for norway_train: 1.560153460898116

Average Loss for norway_tram: 0.17534580454230309
Average RMSE for norway_tram: 0.6122976128095053

서로다른 층 구조 모델 3개 비교 loss, RMSE (0711 - 오후 5시)

시각화 코드 에러 이슈로 콘솔출력 값 수기 입력

2번 모델은 fully connected 층 번갈아가며 쌓음

# 모델 1
Average Loss for norway_bus: 0.4277389136993367
Average RMSE for norway_bus: 2.483556167239904

Average Loss for norway_bus: 0.41329867036446283
Average RMSE for norway_bus: 2.4493275211208436

# **모델 2**
Average Loss for norway_bus: 0.423200525464895
Average RMSE for norway_bus: 2.3877440547929756
↓
Average Loss for norway_bus: 0.4158209310439618
Average RMSE for norway_bus: 2.3758773997697857

# 모델 3
Average Loss for norway_bus: 0.44199857407290005
Average RMSE for norway_bus: 2.3445965110316576

Average Loss for norway_bus: 0.4214636764853545
Average RMSE for norway_bus: 2.3459457710704426

# 모델 1
Average Loss for norway_car: 0.5266553272182742
Average RMSE for norway_car: 1.1137567739190306

Average Loss for norway_car: 0.537993042729795
Average RMSE for norway_car: 1.1149703135520552

# **모델 2**
Average Loss for norway_car: 0.5419865385629237
Average RMSE for norway_car: 1.065013561803757
↓
Average Loss for norway_car: 0.515500831262519
Average RMSE for norway_car: 1.089295040324735

# 모델 3
Average Loss for norway_car: 0.5278499145060778
Average RMSE for norway_car: 1.2076046218577345

Average Loss for norway_car: 0.532243927475065
Average RMSE for norway_car: 1.101109357948759

# 모델 1
Average Loss for norway_ferry: 0.5660448386799544
Average RMSE for norway_ferry: 1.3476696091517664

Average Loss for norway_ferry: 0.5780884129926562
Average RMSE for norway_ferry: 1.3517955546455371

# **모델 2**
Average Loss for norway_ferry: 0.547693053074181
Average RMSE for norway_ferry: 1.3306689245935162
↓
Average Loss for norway_ferry: 0.5230336480308324
Average RMSE for norway_ferry: 1.2412798224211539

# 모델 3
Average Loss for norway_ferry: 0.541606237925589
Average RMSE for norway_ferry: 1.2782834034212676

Average Loss for norway_ferry: 0.5714752587489784
Average RMSE for norway_ferry: 1.4190226079039763

# 모델 1
Average Loss for norway_metro: 0.4791893146932125
Average RMSE for norway_metro: 0.9578108050957672

Average Loss for norway_metro: 0.4964000040665269
Average RMSE for norway_metro: 1.0178109963553026

# **모델 2**
Average Loss for norway_metro: 0.4765708018094301
Average RMSE for norway_metro: 0.9282643189992317
↓
Average Loss for norway_metro: 0.46179626174271104
Average RMSE for norway_metro: 0.8640390700717593

# 모델 3
Average Loss for norway_metro: 0.4830556891858578
Average RMSE for norway_metro: 0.9699208809326457

Average Loss for norway_metro: 0.485748521797359
Average RMSE for norway_metro: 0.9931346681114335

# 모델 1
Average Loss for norway_train: 0.4292234616309759
Average RMSE for norway_train: 1.610844508434629

Average Loss for norway_train: 0.42492537901160266
Average RMSE for norway_train: 1.5799662286803668

# **모델 2**
Average Loss for norway_train: 0.43025303889243377
Average RMSE for norway_train: 1.6481098579220819
↓
Average Loss for norway_train: 0.421641770417669
Average RMSE for norway_train: 1.6100382217767044

# 모델 3
Average Loss for norway_train: 0.41436857725715354
Average RMSE for norway_train: 1.610064776048801

Average Loss for norway_train: 0.4109073242704783
Average RMSE for norway_train: 1.7172948403106445

# 모델 1
Average Loss for norway_tram: 0.590874460159934
Average RMSE for norway_tram: 0.6413066036774696

Average Loss for norway_tram: 0.5994756830457065
Average RMSE for norway_tram: 0.6490862435053213

# **모델 2**
Average Loss for norway_tram: 0.598417838885715
Average RMSE for norway_tram: 0.6486776374131601
↓
Average Loss for norway_tram: 0.5756453441322914
Average RMSE for norway_tram: 0.6241858856390182

# 모델 3
Average Loss for norway_tram: 0.5909878046784017
Average RMSE for norway_tram: 0.6345559510082625

Average Loss for norway_tram: 0.5983663704911513
Average RMSE for norway_tram: 0.6304184990989777

train,test data set 분리 경로 다르게 지정 (0714 - 오후 2시)

시각화 코드 수정

(lr : 0.005, timestep : 10 epoch : 10 batch size : 32, layer : [lstm 64 - fc 1] opt : adam )

dataset tram 병합후 일단 tram으로만 실험 진행 (0717 - 오후 1시)

batch 하지말고 1개씩 다 학습해서, 최대한 예측 성능 높이는 데 초점 두자

학습시간 늦어지면, 514에서 학습 돌려놓기!!

1) tram data set을 파일별로 병합함. 2) 시계열 데이터의 흐름을 유지할 수 있게, timestamp는 누적하여 표기함. 3) 데이터의 변동성을 확인해보자

시간 값을 학습데이터로 받는 문제 해결 (0717 - 오후 4시)

batch = 24 epoch = 10 timestep = 24 lr = 0.01

image

tram dataset file 15개 에 대한 기존방식과의 비교 (with lstm) (0717 - 오후 6시)

48번 파일 mos값 비교

image

image

image

49번 파일 mos값 비교

image

image

image

5번 파일 mos값 비교

image

image

image

50번 파일 mos값 비교

image

image

image

51번 파일 mos값 비교

image

image

image

52번 파일 mos값 비교

image

image

image

53번 파일 mos값 비교

image

image

image

54번 파일 mos값 비교

image

image

image

55번 파일 mos값 비교

image

image

image

56번 파일 mos값 비교

image

image

image

6번 파일 mos값 비교

image

image

image

7번 파일 mos값 비교

image

image

image

8번 파일 mos값 비교

image

image

image

9번 파일 mos값 비교

image

image

image

파일별 성능 비교 (0718 - 오후 3시)

늦잠 이슈 mos 값 그래프로 그리기.

image

lstm / (1 + max error) total MOS: 7.455520349144148
lstm 값으로 대체 total MOS: 7.691166150937331
기존방법 total MOS: 7.639657021220962

파일별 성능 비교 (0718 - 오후 5시)

두 예측값 비교 그래프 시각화

future bandwidth 값 불러오던 중 발생하는 버그 발견 후 수정

14개 tram 파일에 대한 기존 예측값과 lstm 예측값, 실제 값 비교

image

파일별 성능 비교 (0721 - 오후 5시)

두 예측값 비교 그래프, QoE지표 비교 (tram data 시뮬레이션 16회 비교)

image image

image image

image image

image image