mymusise / ChatGLM-Tuning

基于ChatGLM-6B + LoRA的Fintune方案
MIT License
3.74k stars 442 forks source link
chatglm chatgpt lora peft

ChatGLM-Tuning

一种平价的chatgpt实现方案,基于清华的 ChatGLM-6B + LoRA 进行finetune.

数据集: alpaca

有colab的同学可以直接在colab上尝试:

Build
</a>

官方ptuning代码

Demo

S1 Finetune

准备

数据预处理

转化alpaca数据集为jsonl

python cover_alpaca2jsonl.py \
    --data_path data/alpaca_data.json \
    --save_path data/alpaca_data.jsonl \

tokenization

python tokenize_dataset_rows.py \
    --jsonl_path data/alpaca_data.jsonl \
    --save_path data/alpaca \
    --max_seq_length 200 \ 
    --skip_overlength  False
    --chatglm_path model_path/chatglm
    --version v1                 

训练

python finetune.py \
    --dataset_path data/alpaca \
    --lora_rank 8 \
    --per_device_train_batch_size 6 \
    --gradient_accumulation_steps 1 \
    --max_steps 52000 \
    --save_steps 1000 \
    --save_total_limit 2 \
    --learning_rate 1e-4 \
    --fp16 \
    --remove_unused_columns false \
    --logging_steps 50 \
    --output_dir output
    --chatglm_path model_path/chat_glm

推理

参考 infer.ipynb

Finetune前后对比 利用Alpaca数据集合对ChatGLM-6B Finetune后,在Alpaca数据集上表现得更好: - `Answer:` 是模型的输出 - `#### Answer:` 是原答案 ![](https://user-images.githubusercontent.com/6883957/226977555-c00c796f-4fdb-4613-810a-8b9a6068bb1b.jpeg)

S2. Reward Model

S3. PPO

LoRA

LoRA Dataset
mymusise/chatglm-6b-alpaca-lora Alpaca
mymusise/chatglm-6b-alpaca-zh-en-lora Alpaca-zh-en
(on the way) Alpaca-zh

使用预训练好的LoRA

参考 examples/infer_pretrain.ipynb

TODO: