naishasinha / Fantasy-Basketball

A full-stack AI application for NBA fantasy basketball enthusiasts.
MIT License
0 stars 0 forks source link
# NBA Fantasy Basketball Assistant *** πŸ€ _A full-stack AI application for fantasy basketball enthusiasts._ πŸ€ ![9ed13d1846a5f262edaea59c29483c02](https://github.com/naishasinha/NBA-Fantasy-Assistant/assets/117387359/b33e4381-c769-42e4-b8f5-d794aebb213b) *** ## Overview
The NBA Fantasy Basketball Assistant is a full-stack AI application designed to provide in-depth analysis and actionable insights for fantasy basketball enthusiasts. Leveraging detailed NBA game statistics, this tool aims to enhance users' decision-making by predicting team performances, analyzing matchups, and offering personalized recommendations.
## Core Features
### πŸ“Š Team Performance Analysis β†’ **Historical Data Insights**: _Analyze historical data over the last nine seasons to predict future team performances._
β†’ **Current Form**: _Calculate rolling averages of key statistics over recent games to determine current form and identify trends._ ### πŸ† Matchup Analyzer β†’ **Historical Matchup Performance**: _Analyze historical matchups between teams to predict outcomes and evaluate matchup strengths and weaknesses._
β†’ **Performance Trends Against Specific Opponents**: _Highlight performance trends against specific types of opponents (e.g., teams with strong defense or high-scoring offenses)._ ### πŸ“ Customizable Recommendations β†’ **User Criteria-Based Recommendations**: _Allow users to prioritize specific statistics and receive tailored recommendations._
*** ## Project Details ### Development Progress: This project is designed for continuous enhancement and improvement. Therefore, a chart has been added to track the development and completion progress of each project element, highlighting the future updates I plan to implement for improvement.
| Component | Progress | | -------- | ------- | | App Interface (Full-Stack) | βœ… Completed UI/UX Design Implementation
βœ… Client successfully displays and interacts with server mock data
βœ… Seamlessly implements dynamic internal page changes | | Machine Learning Prediction Model | βœ… Initial model complete with 63% accuracy
⚠️ Working to [improve current accuracy](https://github.com/naishasinha/Fantasy-Basketball/issues/1) | | Integration of ML Results and Pandas Manipulation Data with Server | ⚠️ In Progress | | πŸ“… **Current Task** πŸ“… | | -------- | | Develop a JSON file that generates up-to-date performance and matchup analysis based on the mock data format. |
### Noteworthy Description Files:
ML-Model
  • ML-Model README.md file:
    Provides details and explanations behind the web scraping and predictor model training process
Client
  • Client README.md file:
    Provides details on navigating and utilizing the React App

### Full Directory Tree:
``` nba-fantasy-assistant/ β”œβ”€β”€ ML-model/ β”‚ β”œβ”€β”€ README.md β”‚ β”œβ”€β”€ Create_NBADataset.ipynb # Code for creating CSVs (Jupyter Notebook) β”‚ β”œβ”€β”€ Retrieve_NBAData.ipynb # Web Scraping Code (Jupyter Notebook) β”‚ β”œβ”€β”€ NBA_PredictionModel1.ipynb # Base ML Model β”‚ β”œβ”€β”€ nba_data/ β”‚ β”‚ β”œβ”€β”€ .ipynb_checkpoints/ β”‚ β”‚ β”œβ”€β”€ scores/ # All individual box scores across seasons β”‚ β”‚ β”œβ”€β”€ standings/ # All standings (by month) across seasons β”‚ β”‚ β”œβ”€β”€ ... # Other miscellaneous csv files β”œβ”€β”€ client/ β”‚ β”œβ”€β”€ public/ β”‚ β”œβ”€β”€ src/ β”‚ β”‚ β”œβ”€β”€ components/ β”‚ β”‚ β”‚ β”œβ”€β”€ Form.css β”‚ β”‚ β”‚ β”œβ”€β”€ Header.css β”‚ β”‚ β”‚ β”œβ”€β”€ Modal.css β”‚ β”‚ β”‚ β”œβ”€β”€ Modal.js β”‚ β”‚ β”‚ β”œβ”€β”€ NavButton.css β”‚ β”‚ β”‚ β”œβ”€β”€ NavButton.js β”‚ β”‚ β”œβ”€β”€ images/ # All images used for app β”‚ β”‚ β”œβ”€β”€ pages/ β”‚ β”‚ β”‚ β”œβ”€β”€ Home.js # Main (Home) Page β”‚ β”‚ β”‚ β”œβ”€β”€ Home.css β”‚ β”‚ β”‚ β”œβ”€β”€ TeamPerformanceAnalysis.js β”‚ β”‚ β”‚ β”œβ”€β”€ MatchupAnalyzer.js β”‚ β”‚ β”‚ β”œβ”€β”€ FantasyRecommendations.js β”‚ β”‚ β”œβ”€β”€ App.js β”‚ β”‚ β”œβ”€β”€ index.js β”‚ β”‚ β”œβ”€β”€ index.css β”‚ β”œβ”€β”€ package.json β”‚ β”œβ”€β”€ README.md # React App Explanation β”œβ”€β”€ server/ β”‚ β”œβ”€β”€ index.js β”‚ β”œβ”€β”€ package.json β”œβ”€β”€ README.md # Main Project File README β”œβ”€β”€ LICENSE ```

### Tech Stack:
Jupyter Notebook HTML CSS JavaScript React Node.js Express mongoDB Python

**Other tools for ML Model:** `NumPy` `Pandas` `Scikit-learn` `BeautifulSoup`
### Running the Application: Main Directory Command: `cd NBA-Fantasy-Assistant`
#### Front-End 1. Navigate to the `client` directory: ``` cd client ``` 2. Install dependencies: ``` npm install ``` 3. Start the React App: ``` npm start ``` #### Back-End 1. Navigate to the `server` directory: ``` cd server ``` 2. Install dependencies: ``` npm install ``` 2. Start the server: ``` node index.js ```
**Open your browser and go to `http://localhost:3000` to view the application.** *** #### This project is [licensed](LICENSE) under the `MIT License`. ##### _Copyright (c) 2024 Naisha Sinha_ ***